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Abstract

In recent years, imaging through atmospheric turbulence has interested mil-

itary scientists seeking to improve optical surveillance of satellites for intelligence

gathering purposes. Adaptive optics was a step toward achieving diffraction-limited

resolution from ground-based telescopes. Unfortunately, adaptive optics only par-

tially compensate for atmospheric blurring, therefore post-processing of images is

required. Processing methods in use today require knowledge of the impulse re-

sponse of the optical system to reconstruct imagery, but this information is seldom

known. This thesis looks at a new method of processing compensated imagery, called

blind deconvolution, which assumes very little or no a priori information about the

impulse response. In particular, this investigation analyzes the performance of Lane's

unconstrained minimization method of blind deconvolution as modified by Jefferies

and Christou. The unconstrained minimization technique is applied to simulated

single and binary star images corrupted by photon noise. Results reveal that prior

knowledge of the cutoff frequency of the system greatly enhances the ability of the

algorithm to achieve accurate estimates of the object when measurements contain

relatively few photo events. Additionally, this study discovered that estimates are

highly dependent upon the choice of the support region. Analysis also shows that

the algorithm produces estimates containing frequency content above the diffraction-

limit. The presence of this high-frequency information may invalidate this method

as a useful means to reconstruct imagery.

xiii



EFFECTS OF PHOTON NOISE ON UNCONSTRAINED

MINIMIZATION TECHNIQUES FOR ITERATIVE

BLIND DECONVOLUTION

I. Introduction

1.1 Motivation

For centuries, scientists and philosophers alike have looked to the stars for

numerous purposes: for meaning in life as well as a better understanding of our

universe and our planet. The invention of the telescope permitted man a closer look

at the stars, but many soon realized that the starlight they beheld was distorted by

the atmosphere. Isaac Newton surmised in 1704 that better observations might be

made on the peaks of high mountains to mitigate "the confusion of the rays which

arises from tremors of the atmosphere" (16).

Today, the telescope has uses far beyond what Newton and his contemporaries

dreamed. The launch of Sputnik in 1957 threw the United States into a flurry of

activity to respond in kind while apprehension over the Soviet's ability to place an

object in orbit created an entirely new endeavor-space surveillance. The Air Force

met this new mission requirement by first employing the Baker-Nunn satellite track-

ing camera at five locations around the world (15). The Baker-Nunn camera used a

modified Schmidt telescope with excellent resolution to photograph and identify ob-

jects in space. Since the early 1960's, the space surveillance mission has shifted from

visual optics to radar which is not limited to operations at night. However, optical

surveillance maintains a key role in accomplishing the space surveillance mission.

The ground-based electro-optical deep space surveillance system (GEODSS) sensors

are responsible for collecting over 65 percent of the tracking data for deep space ob-
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jects (15). According to the Air Force's Space Handbook, space surveillance includes

"the ability to surveil and monitor continuously all significant military activities in

space" (15). Today, Air Force leaders not only want to know the satellite and its

owner, but also what missions it performs and what equipment it carries. This re-

quires much more resolution than current GEODSS telescopes or even phased-array

radar can provide.

Research toward improving this resolution is accomplished at the U. S. Air

Force Maui Optical Station (AMOS). AMOS houses one of the most advanced tele-

scopes in the world for the purpose of imaging objects in space. It's 1.6 meter

telescope obtains short-exposure, high resolution imagery through the use of an

adaptive optics system. Since adaptive optics only partially compensates for the

turbulence-induced aberrations, AMOS also relies on post-processing techniques to

improve overall image quality (23).

Much work has gone into developing algorithms and techniques which can im-

prove the quality of blurred images. Most techniques require an understanding of the

impulse response, also called the point spread function (PSF), and some knowledge

of the statistical nature of the noise inherent in the optical system. Adaptive optics

images result from the actual object and the compensated PSF, which includes ef-

fects from atmospheric turbulence not corrected by the adaptive optics system. To

alleviate the problem of the unknown PSF, one image processing method, blind de-

convolution, makes successive guesses at both the object and point spread function

such that they converge on the "true" object and PSF.

Blind deconvolution provides the ability to make estimates of both an object

and a PSF without a priori knowledge of the blurring function. Though several

papers have been written on the topic of blind deconvolution, the work completed

by R. G. Lane (13) can most readily be applied to short exposure compensated

imagery. The Lane method as modified by S. M. Jefferies and J. C. Christou allows

for great flexibility since it makes estimates of both the object and the PSF given
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any amount of information available on the impulse response-from no information

to complete knowledge of the optical system (12).

Since the adaptive optics system at AMOS takes short-exposure images con-

taining very little light, any post-processing technique must have the ability to recon-

struct images in the presence of photon noise. Jefferies and Christou only addressed

the issue of additive noise. Thus, before recommending this technique to the opera-

tional users on Maui, the question should be asked: How well does the unconstrained

minimization algorithm perform for photon limited images?

1.2 Problem Statement

This thesis seeks to document the ability of the iterative deconvolution al-

gorithm to reconstruct images in the presence of photon noise. The algorithm's

performance is evaluated as a function of differing light levels and differing amounts

of prior information concerning the blurring function and the noise.

1.3 Approach

To accomplish the task of evaluating the unconstrained minimization tech-

nique, several things were put in order. First, S. M. Jefferies and J. C. Christou

gave permission to use their FORTRAN code which implements the unconstrained

minimization technique through their iterative deconvolution algorithm (IDA) as

discussed in their 1993 paper (12). Second, a model had to be developed which

would isolate photon noise from all other noise and blurring effects. Finally, experi-

mentation was designed around answering the following questions.

1. How can photon noise be modeled for computer simulation?

2. At what light level can IDA no longer improve the measured image?

3. Do the modifications made by Jefferies and Christou provide significant

improvement over the Lane method for reconstructing photon limited imagery?

1-3



4. How can prior information regarding the point spread function's cutoff

frequency best be utilized in the reconstruction?

As a result, computer simulation was selected as the best means of both cre-

ating photon limited images and testing the blind deconvolution algorithm.

1.4 Scope

This thesis seeks to simulate post-processing of images of exo-atmospheric ob-

jects obtained through an adaptive optics system and specifically analyze the effects

of photon noise in the measured images. The single simulated images are limited to

point sources of differing intensity and separation. These images are directly analo-

gous to single and binary star images. Multiple or composite images and extended

objects, such as satellites, are not addressed within this study.

Jefferies and Christou modified the Lane method by adding band-limit and

Fourier modulus error terms to the objective function for minimization. Since the

IDA code allows selective use of both of these error metrics, only the band-limit

metric was tested. The following analysis does not include use of the Fourier modulus

error metric, since its application requires Fourier modulus information obtained

through speckle'interferometry (13). One goal of this paper is to reveal the utility

of pure blind deconvolution, thus as little additional information as possible is used

in the reconstruction process.

Additionally, this thesis limits its scope to post-processing of detected images

only. It does not discuss design of an adaptive optics system. Optical design issues

such as properties of optical materials or detector array functions are not addressed

here. Finally, this paper does not consider real-time processing of images nor does

it specifically cite the computational hardware necessary to process images.
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1.5 Summary of Key Results

Several results were obtained in this analysis which weigh heavily on the fu-

ture study of this algorithm to process images of extended objects. Proof that the

unconstrained minimization technique will work for extended objects is absolutely

necessary before any proposal can be made regarding its operational use at AMOS.

The key results obtained by this study are as follows:

1. Support size and shape greatly affect the reconstruction. Incorporating

knowledge of the shape and especially the location of the first ring of the actual

point spread function in the support arrays produces object estimates much closer

to the "true" object.

2. Information regarding the diffraction-limited spatial frequency cutoff, or

band-limit, of the measured image is necessary to reconstruct any photon limited

image, even when the amount of light present is relatively high. Without the band-

limit input, the noise in the measured image is multiplied in the estimates produced

by IDA similar to noise effects in an inverse filter.

3. The IDA code performs well for very high light levels. As the light level is

reduced, Poisson noise effects due to the random arrival of photo-events become so

strong that single images at low light levels are almost impossible to restore correctly.

4. Unconstrained minimization techniques allow for the creation of information

above the cutoff frequency-an attempt at super-resolution. The high frequency

content in the estimated object spectrum and optical transfer function (OTF) leads

one to question the validity of the iterative deconvolution algorithm, especially since

the point spread function is band-limited due to the physical nature of the optics.

1.6 Chapter Outlines

A brief synopsis of the remainder of the thesis follows.
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1.6.1 Chapter Two. Chapter 2 reviews some earlier work in the area of

blind deconvolution and outlines the algorithm derived by Lane and modified by

Jefferies and Christou.

1.6.2 Chapter Three. Chapter 3 lays down the terminology, the compari-

son metrics and the objectives which allow for computer simulation of the iterative

deconvolution algorithm.

1.6.3 Chapter Four. Chapter 4 details three experiments designed to test

the blind deconvolution technique and analyzes the results of the experimentation

with the main focus on the effects of photon noise.

1.6.4 Chapter Five. Chapter 5 summarizes the important results uncovered

throughout this thesis effort and concludes with recommendations for further study

on extended objects.

1.6.5 Appendix A. Appendix A documents the iterative deconvolution

algorithm (IDA) code as modified for this thesis. This appendix provides consider-

able detail on the use of the FORTRAN code provided by S. M. Jefferies and J. C.

Christou which performs blind deconvolution through unconstrained minimization.

Included in the appendix are the appropriate inputs used by the program and the

proper format for the different data files. This appendix also contains some helpful

hints regarding modification of the code for future study.

1.6.6 Appendix B. Appendix B contains a compilation of the simulated

input images utilized in three experiments.

1.6.7 Appendix C. Appendix C consists of estimates produced by the Lane

method in Experiment 1 for noise-free images.
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1.6.8 Appendix D. Appendix D compiles the object estimates made during

Experiment 2 for photon limited images using both the strict Lane method and the

modified algorithm of Jefferies and Christou.

1.6.9 Appendix E. Appendix E lists the output estimates found in Exper-

iment 3 utilizing the band-limit error term in unconstrained minimization.
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II. Background

2.1 Introduction

This chapter presents the basic framework necessary to understand the funda-

mental problem of atmospheric turbulence, its relation to adaptive optics, and why

post-processing of images is necessary after adaptive optics correction. In addition

to the fundamentals of atmospheric imaging, background material is presented on a

particular post-processing technique called blind deconvolution. After a brief survey

of various blind deconvolution algorithms, this chapter concludes with a detailed

look at the unconstrained minimization method derived by R. G. Lane and modified

by S. M. Jefferies and J. C. Christou.

2.2 Atmospheric Turbulence

The resolution of images formed by large optical telescopes is directly at-

tributable to atmospheric turbulence. According to the "turbulent eddy" model,

this degradation is due to random inhomogeneities in the refractive index of air (8).

Differential heating of the Earth's surface creates this phenomenon, producing large

scale temperature gradients. Convection and turbulent wind flow break up these

large scale inhomogeneities into smaller scale "eddies". Each turbulent eddy has

a unique refractive index, which modulates the amplitude and phase of a propa-

gating wavefront both temporally and spatially. Amplitude modulation results in

scintillation as observed in the twinkling of stars, whereas phase modulation results

in random image motion (known as tilt) and phase aberration. For the case of

ground-based imaging of exo-atmospheric objects, the effects of phase modulation

are generally more severe than amplitude modulation (5).

Astronomers concerned with the propagation of light waves through turbulence

have developed various parameters for characterizing the severity of image degrada-

tion due to turbulence. Astronomers typically use such parameters to compare the
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relative seeing quality of candidate sites for new observatories. One of the most

convenient and widely used measures of seeing quality was introduced by Fried (6)

and is denoted r 0 . It is defined as the effective diameter of a telescope for which the

Strehl resolution of the telescope is equal to the Strehl resolution associated with

the atmospheric optical transfer function (OTF) (18). r0 is a function of the zenith

angle of the path of propagation, the wavelength, and the turbulence strength (18).

Since the effects of turbulence on optical propagation are random in nature, r0 is

also random. Typical values for ro at a good observatory range from 5 cm for mod-

erately poor seeing to 20 cm for exceptional seeing (8). In addition to its practical

use as a measure of relative seeing quality, r0 is widely used in expressions for the

atmospheric OTF (8). Since it acts as an effective telescope diameter, r0 simplifies

the form of the OTF, and aids in understanding the effect of the atmosphere relative

to the true diameter of the optics.

Since the atmospheric turbulence changes randomly as a function of both time

and space, no two images taken through the atmosphere can have the same atmo-

spheric OTF unless they are imaged through the same part of the atmosphere at the

exact same time. The usual method of modeling the imaging process is by assuming

the process is linear and shift invariant (2). Given an object, f(x, y), and a point

spread function (PSF), h(x, y), where (x, y) is a position vector locating an arbitrary

point in image space, the measured image, g(x, y), is given by

g(xy) = (x,y) * h(xy), (2.1)

and by the convolution theorem,

g(x, y) +-+ G(u, v) = F(u, v)H(u, v), (2.2)

where "." denotes the two-dimensional convolution of the two functions, the capital

letters represent the Fourier transforms of the respective lowercase functions and the
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"4-4" identifies a Fourier transform pair. Points in Fourier space are given by the

position vector (u, v). Therefore,

f(X y) +-* F(u, v) = 1. 0 f( Y) exp[j2r(ux + vy)] dx dy, (2.3)

where F(u, v) represents the Fourier transform of f(x, y).

If the object can be assumed to be stationary, then one only needs to determine

under what conditions the PSF, h(x,y), is shift invariant to have a linear, shift

invariant system. Since the PSF is the inverse Fourier transform of the optical

transfer function, H(u, v), the PSF varies both spatially and temporally as well. To

freeze the time-varying shift in the PSF or OTF, short-exposure images on the order

of milli-seconds are required. To ensure shift invariance, each object must be viewed

through a very small cone of the atmosphere. This small angle is known as the

isoplanatic angle. Equation 2.1 above is valid only for short-exposures and when the

object lies within the isoplanatic angle.

2.3 Adaptive Optics

Though atmospheric imaging requires short-exposures to be imaged through

very small solid angles, real-time compensation of the random phase modulation due

to turbulence can be achieved through the use of adaptive optics. To accomplish

this, the adaptive optics system must measure these phase aberrations and compen-

sate for them almost instantaneously using a deformable mirror. Determining the

phase perturbation requires a wave-front sensor which observes a near-by natural

star or a synthetic laser guide star (21). The wave-front sensor communicates the

phase aberrations present in a particular isoplanatic region of the atmosphere at a

specific time to the electronics which deform the mirror appropriately. In the AMOS

system, a monolithic piezoelectric mirror (MPM) has 168 actuators which push or
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pull on different locations around the mirror to correct for phase errors caused by

atmospheric turbulence (19).

2.4 Post-processing Techniques

Unfortunately, residual phase errors still remain even after adaptive optics

correction (21). Therefore, post-processing of images is required to correct for the

effects of residual phase errors and to sharpen the image since high spatial frequency

information is attenuated by the OTF. Sharpening of the image can be accomplished

through deconvolution of the point spread function from the measured image. Quite

often an ensemble of images are averaged and the average point spread function can

be deconvolved from the average measured image (19). Roggemann [1992] uses both

a modified inverse filter and a pseudo-Wiener filter to make estimates at an object

spectrum given an ensemble of image measurements from an adaptive optics system

(19).

Both methods discussed by Roggemann require some knowledge of the OTF

and the noise present in the images. If (G(u,v)) represents the average spectrum

of the measured images, then the object spectrum can be estimated by the inverse

filter,
F v (G(uv)) (2.4)

F ~~f(u,v)=fu7V) (24

and the pseudo-Wiener filter,

F(u, v) = (G(uv))+,v) (2.5)
H~u~v12 ± SNR~u,v)I

where -I(u, v) is an estimate of the average compensated OTF, SNR(u, v) is an

estimate of the image spectrum signal-to-noise ratio and P3 is a parameter of choice

(19). Errors in the object spectrum estimate, P(u, v), occur any time !H(u, v), P3, or

SNR(u, v) are not chosen exactly. Since H(u, v) in particular is seldom known, new
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techniques have recently been proposed which estimate both the object spectrum

and the OTF.

2.5 Survey of Blind Deconvolution Techniques

T. G. Stockham coined the term "blind deconvolution" as signal or image

recovery from a large collection of differently blurred versions of the same signal or

image (22). It is interesting to note that one of Stockham's applications for blind

deconvolution involved the hopeful recovery of pristine vocalizations of famous opera

singers from old gramophone records (2). Today, blind deconvolution of imagery

categorizes the techniques which seek to estimate an object's intensity directly, either

from a single image or ensemble of images without prior knowledge of the PSF. Most

techniques involve an iterative process which starts with an initial estimate at the

object and PSF and converges toward the "true" object and PSF with each iteration.

These methods require a vast amount of computer processing needing hundreds to

thousands of iterations to complete.

The blind deconvolution problem has been approached several different ways.

The first method involves an iterative process in which the object and PSF estimates

are successively modified by certain image plane constraints. A second approach

involves maximum-likelihood estimation using the expectation-maximization algo-

rithm. The third method formulates the problem as an unconstrained minimization

problem and uses a conjugate gradient minimization algorithm to iteratively deter-

mine the object and PSF. The proceeding sections briefly sketch each of the three

approaches to the blind deconvolution problem.

2.5.1 Ayers-Dainty method. In 1988, G. R. Ayers and J. C. Dainty pub-

lished the first paper containing a working blind deconvolution algorithm (1). The

Ayers and Dainty technique, shown pictorially in Figure 2.1, requires an initial guess

at the PSF and then utilizes an iterative method which subsequently constrains each
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F(u, v) Calculate F H(U, v)

from G and f

(6)

Fourier transform (7) (5) Fourier transform

Impose image Ayers and Dainty (4) Impose image
plane constraints Algorithm plane constraints

A trans) for () (3) y)

Fourier transform

(2.)

F~u, v) C~alcuate H H(u, v)
from G and Fv

Figure 2.1 Ayers-Dainty blind deconvolution algorithm. Positivity is applied at
steps 4 and 8 while the Fourier domain constraints are applied at steps
2 and 6.
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object and PSF estimate in the image domain and the frequency domain. After an

initial guess at the object, fo(x, Y), is provided, the Ayers-Dainty algorithm performs

the following eight steps iteratively.

1. Fourier transform the object estimate, f(x,)y), to obtain an object spectrum

estimate, P(u, v).

2. Form a new estimate of the OTF, H(u, v), from the measured image spec-

trum, G(u, v), and -(u, v). Rather than apply a simple inverse filter, the Ayers-

Dainty approach applies a Fourier domain constraint. This constraint ensures the

product of both P and H equal G while preventing small errors in G from resulting

in large errors in H where P is extremely small. Also, the Fourier domain constraint

forms a weighted average of the previous estimate of the OTF and the inverse fil-

tered estimate, G/F. The Fourier constraint applied in the Ayers-Dainty algorithm

is summarized below.

If IG(u, v)l < noise level,

H+ 1 (u, v) = H•(u,v); (2.6)

if IP(u,v) I__ IG(u,v)l,

H,+i (u, v) = (1 - 3)k,(u, v) + 0 G(u, v) (.7

if J.P(u, v)I < IG(u, v)1,

1 (i-i3) +.(uv)
Hi+i (u, v) H: fI (u, v) +fl' v2.8

where 0 < f3 : 1 and 8l is set before algorithm is run and i and i + 1 represent the

current iteration and next iteration, respectively .

3. Inverse Fourier transform the OTF estimate, H(u, v), to obtain a PSF

estimate, h(x, y).
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4. Impose image plane constraints on h(x, y) to obtain h(x, y). This image

plane constraint forces every pixel within the estimate to be positive by setting each

negative pixel to zero. The algorithm checks every pixel value at each iteration. The

algorithm keeps track of the energy, or negative values, removed by summing their

absolute values. Then the algorithm equally redistributes the removed energy to all

pixels in the PSF estimate.

5. Fourier transform the constrained PSF estimate, h(x, y), to obtain an OTF

estimate, Hi(u, v).

6. Impose the same Fourier domain constraints listed in step 2 to determine a

new value for the object spectrum, F(u, v), by replacing H with F and visa versa.

7. Inverse Fourier transform the object spectrum estimate, F(u, v), to obtain

an object estimate, f(x,y).

8. Impose the positivity constraint on f(x, y) to obtain a new object estimate,

f(x, y). If the new object estimate is not adequate, then return to step 1.

The Ayers-Dainty approach works well for images without noise corruption.

However, the method requires further refinement in order to accommodate contam-

inated or complex images. In 1989, B. L. K. Davey, R. G. Lane, and R. H. T. Bates

modified the Ayers-Dainty technique to handle small amounts of noise in the image

by implementing a Wiener filter in the Fourier domain constraint to obtain each

consecutive estimate of the object spectrum and the optical transfer function. In

the image domain, Davey, et al. apply a support constraint in addition to positivity.

The support constraint restricts the object and PSF estimate pixels to zero outside

a specified region. This method requires the input of a binary mask which gives

the extent of the object and another mask containing known extent of the PSF (4).

Davey's modification of Ayers-Dainty revealed that blind deconvolution was possible

for images corrupted by random additive noise.
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Another modification to the Davey approach by Miura handles multiple speckle

images of the same object (14). Each individual image, g,,(x,y) can be modeled in

the following way

g. (x, y) = f(x,y) * h.,(x,,y), (2.9)

where h,,(x, y) represents the nth instantaneous PSF and the asterisk, "*", denotes

two-dimensional convolution. The Miura algorithm performs blind deconvolution on

each speckle image and averages the resulting object estimates after each iteration to

obtain a single object estimate in which to start the next iteration. This algorithm

combines the relative simplicity of the Ayers-Dainty approach with noise variance

reduction through multiple image averaging. This modification to Ayers-Dainty

reduces the number of iterations required while restoring noisy speckled images.

The Ayers-Dainty technique and the modifications outlined above proved that

blind deconvolution was indeed possible. Unfortunately, they all had a serious draw-

back. Though they worked well on simulated data where the "true" object and PSF

were known, none of the methods outlined above converge on the object and PSF ei-

ther in a mean squared error sense or visually at consecutive iterations (13). In other

words, if c' represents the mean squared error at the nth iteration, then the error at

a subsequent iteration is not necessarily less than the current error. Therefore, the

following is possible,

2 2 (2.10)en+l > gn

where E contains the error at the next iteration. Two methods have been devel-

oped which converge on either a maximum or minimum point; theoretically providing

better estimates with increasing iterations and improved stopping criteria for the it-

erative blind deconvolution process.

2.5.2 Maximum-likelihood estimation. One method has been suggested

which performs iterative blind deconvolution with improved convergence properties.

The goal of the maximum-likelihood estimation (MLE) technique is to find the object
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intensity and the point spread function(s) that most likely created the measured data

(21). T. J. Holmes recognized the need to deconvolve a signal without knowing the

impulse response for confocal fluorescence microscopic imagery (11). Holmes sought

to use MLE as a quantitative optimization criterion to solve the blind deconvolution

problem of quantum-limited incoherent imagery.

In order to utilize the iterative method of MLE, Holmes derives a log-likelihood

function to include the total photon count and the current object and PSF estimate.

Each successive iteration produces a new estimate of both the object and PSF which

monotonically increases the log-likelihood function. Holmes proved that since the

MLE method treated the object and PSF arrays as probability density functions,

each estimate was implicitly constrained to be non-negative and retain unit-volume

(11). Unfortunately, the simple unconstrained MLE process did not produce any re-

sults resembling the true object and PSF. Holmes had to apply an external constraint

to the iterative process.

As the first constraint, Holmes required that the impulse response estimate re-

main radially symmetric at every iteration since the PSF for many optical systems is

symmetric. Outstanding results were obtained using the radial symmetry constraint

on simulated images blurred with a circular PSF and corrupted by photon noise. As

Holmes states, the drawback to the radial symmetry constraint is that the trivial

solution (where the PSF becomes a delta function and the object estimate becomes

the measured image) will eventually be reached given enough iterations (11).

To prevent the trivial solution, Holmes tried restricting the bandwidth of the

PSF to the cutoff frequency of the optical system. At each iteration of the MLE

method, this constraint extinguishes all information in the OTF estimate above a

cutoff frequency determined by the optics, then inverse Fourier transforms the OTF

to obtain the PSF, and sets all negative values in the PSF to zero before returning the

new PSF back for the next iteration. This constraint produced outstanding results

in conjunction with MLE for restoring photon-limited images. However, even though
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the log-likelihood function increased monotonically using this method, a point was

reached when the object and PSF estimates began to diverge from the true object

and PSF (11). Thus, Holmes method has no guaranteed stopping criteria which

present the best estimate of both object and PSF.

T. J. Schulz applied Holmes' maximum-likehhood estimation method to re-

construct a series of short-exposure images taken through atmospheric turbulence

without the aide of a nearby point source or any knowledge of the atmospheric point

spread functions (21). Schulz modified Holmes' MLE method for photon-limited im-

ages by extending the iterative process to handle a series of images of the same object.

Noting that atmospheric PSFs have neither radial symmetry nor a unique band-limit,

Schulz suggested two different modifications to the MLE method to overcome the

problem of convergence on the trivial solution. One method utilizes a penalized

maximum-likelihood function, while the other method is based on the parameter-

ization of the PSFs by phase errors distributed over an aperture (21). Excellent

results were obtained using simulated and actual photon-limited data. However, no

information was given concerning the stopping criteria for the algorithm or whether

the object and PSF estimates reached an optimal point then diverged from the true

object and PSF.

2.5.3 Unconstrained Minimization. R. G. Lane addressed the blind decon-

volution problem another way. Lane noted that the Ayers-Dainty approach "lacked

stable convergence properties." By minimizing an error metric which included both

the object and PSF estimate, he modeled blind deconvolution as an unconstrained

minimization problem. Based on a steepest-descent search, Lane's algorithm handles

additive noise and has well-defined stopping criteria (13).

Lane's method defines an error metric which quantifies how much the current

estimate violates known constraints. The constraints applied in this method are sim-

ilar to those used in previously mentioned blind deconvolution techniques-namely
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positivity and convolution. Additionally, Lane utilizes a support constraint in image

space which restricts the extent of the object and PSF estimates. The combined

error function minimized in this method is shown below,

Er = E, + Ef, (2.11)

where Ei and Ef represent the errors in the image domain and Fourier domain, re-

spectively. With yf and 7h denoting the points where f(x, y) and h(x, y) respectively

violate their image plane constraints, Lane defines Ei as

E j If(,,Y)l 2 dx dy + Jj h(, y)2 dx dy. (2.12)

Ef quantifies the error in the convolution of the two estimates with respect to the

measured image. Ef is given by

Ef = f IG(u,v) - F(u,v)H(u,v)12 dudv, (2.13)

where F(u,v) and H(u,v) are the Fourier transforms of the object and PSF esti-

mates, respectively (13).

Minimization of the combined error function is accomplished through a conju-

gate gradient minimization routine. The routine requires no additional constraints

apart from the objective function itself. Thus, the Lane method models an uncon-

strained minimization problem where the pixels in the object and PSF represent

the independent variables of the objective function to be minimized. The fact that

this technique does not use an inverse filter to calculate either the object or PSF

estimate is one of its strong points, since it is not overly sensitive when either of the

convolutional components is close to zero. Another advantage of conjugate gradient

minimization is that the objective function value monotonically decreases with each

iteration until a local minimum is found.
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The addition of a support constraint serves to prevent the occurrence of the

trivial solution where f(x,y) is exactly g(x,y) and the PSF, h(x,y), is an impulse

function, 8(0, 0). Constraining the object estimate to have non-zero values in a region

smaller than the array size ensures that the trivial solution has some error associated

with it. Noise in the imaging process can be modeled in the following manner,

g(x,y) = f(x,y) * h(x,y) + c(x,y), (2.14)

where the term, c(x, y), represents additive noise. Without the support constraint,

the trivial solution,

g(X, y) = g(X, y) * 6(0, 0), (2.15)

represents the global minimum to Equation 2.14 above.

Lane obtained excellent results using his method in the presence of Gaussian

and Poisson noise for simulated images using the unconstrained minimization method

from several different initial estimates. One problem the Lane method has is the

relatively high probability of finding a local minimum instead of the global minimum

depending on the initial estimates (13).

S. M. Jefferies and J. C. Christou modified the Lane algorithm (12). The

Jefferies and Christou model includes not only the positivity, convolution and sup-

port constraints utilized by previous blind deconvolution algorithms but also applies

band-limit, multiple image and Fourier modulus constraints. Jefferies and Christou

claim their unconstrained minimization technique achieves "super-resolution" for

continuous gray-scale images and low signal-to-noise ratio images by incorporating

as much a priori information as possible in their algorithm.

The modification of the Lane algorithm seeks to minimize an error function

with four terms instead of two. The error function, 6, is defined as

S- Ei + Ei + Ebl + EFm, (2.16)
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where the four terms each represent an error defined by the current estimate of the

object and PSF. The image domain error is exactly the same as Equation 2.12 in

the Lane method. The convolution error,

Ef =- J 1•G(u, v) - F(u, v)H(u, v) I B(u, v) du dv, (2.17)

appears similar to Equation 2.13 with one additional term containing a low pass filter,

B(u, v), which eliminates the high-spatial frequency content of the noise present in

the measurement. Thus, the object and PSF are loosely constrained to convolving

to a low pass filtered version of the measured image, since no information is passed

by the pupil for spatial frequencies greater than the cutoff frequency, D/A, where D

is the telescope diameter and A is the optical wavelength.

The band-limit error term, EbI, is utilized for the first few iterations when

the trivial solution continually appears using only the first two error terms, then

convergence is obtained using the image domain and convolution errors. The band-

limit error,

EbI = /JJ/H(u,v)12 B'(u,v)du dv, (2.18)

contains a high pass filter, B'(u, v), which acts to sum all frequency information in

the OTF outside the cutoff frequency. Minimizing the high-frequency information

in the PSF estimate ensures that the trivial solution will not be attained. Since this

error metric forces high spatial frequency noise into the object estimate, it has to be

relaxed before convergence.

The Fourier modulus error, EFm, utilizes Fourier modulus information obtained

through speckle interferometry to constrain the estimate of the object spectrum to

very near the true object spectrum modulus. As expected, this constraint proves

to be a powerful tool in extracting an estimate very close to the true object from

noisy data as long as the Fourier modulus information is available. When the Fourier

modulus error is used, the noise in the convolution images mainly manifests itself in
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the reconstructed PSF leaving an object estimate almost void of noise. See Jefferies

and Christou (12) for more detailed information regarding the Fourier modulus error.

Few results were obtained using the modified Lane method without the Fourier

modulus error. Those shown were compared against the excellent estimates made

with the Fourier modulus error. Jefferies and Christou performed their analysis on

images corrupted by zero-mean Gaussian noise. What remains to be asked are the

following:

1. Can the addition of band-limit information to Lane's blind deconvolution

technique perform well in the presence of photon noise?

2. Can this method be effectively used on compensated imagery from an adap-

tive optics system?

3. Since neither Lane nor Jefferies and Christou discuss the support constraint

in detail, how does varying the support region affect the restoration of images?

2.6 Summary

This chapter reviewed fundamentals of imaging through atmospheric turbu-

lence and presented a brief explanation of adaptive optics. Since imagery from

adaptive optics still requires post-processing, the method of blind deconvolution was

reviewed explicitly. Blind deconvolution involves restoration of an image or a series of

images without prior knowledge of the blurring function or PSF. The Ayers-Dainty

approach was the first workable algorithm toward solving the blind deconvolution

problem. Due to the inability of Ayers-Dainty to converge on a "best" estimate,

two other methods have been proposed. Maximum-likelihood estimation uses an

iterative method which increases the likelihood that the object and PSF correctly

estimate the "true" object and PSF. Results from Holmes, however, reveal that the

maximum-likelihood estimation reaches an optimal estimate then diverges from the

"true" object and PSF with further iterations. Lane proposed an unconstrained

minimization solution to the blind deconvolution problem. Constraints are effec-
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tively modeled in an error function which can be minimized through the conjugate

gradient method. Further modifications to the Lane method developed by Jefferies

and Christou are worthy of continued analysis. Chapter 3 discusses the modified

Lane technique for experimentation on the effects of support size and photon noise

on image restoration.
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III. Methodology

3.1 Introduction

This chapter transitions from a basic understanding of the unconstrained min-

imization technique for blind deconvolution to its implementation on simulated im-

ages. In order to fully understand the approach taken, the notation for several terms

are defined followed by a defense for computer simulation of this problem. The latter

part of the chapter includes several key factors in the development of experimenta-

tion to analyze the Jefferies and Christou modification to the Lane method called

the iterative deconvolution algorithm (IDA). First, the goals of subsequent experi-

mentation and testing are listed. Then, a discussion of how the functions affecting

the blind deconvolution algorithm is presented followed by a discussion of an error

metric utilized in the comparison of different results. Finally, a listing of the vari-

ables affecting the blind deconvolution process emphasizes which ones will be altered

and which ones will remain constant for the purposes of experimentation.

3.2 Terminology

As alluded to in the previous chapter, imaging is modeled as a linear, shift

invariant process with the following form:

g(xy) = f(x,y) * h(xy), (3.1)

where (x, y) represents an arbitrary point in the image domain, "." denotes the two-

dimensional convolution of the "true" object, f(x, y), and the point spread function

(PSF), h(x, y), and g(x, y) defines the measured image. Departures from the ideal

convolution include noise inherent in the imaging process and assorted non-linearities

(2). For short-exposure images, photon noise manifests itself in the random arrival

of photons at the detector. All of these departures can be added to Equation 3.1 in
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the form of a single contamination term. A new mathematical model of the imaging

process follows,

g(x,y) f(x,y) * h(x,y) + c(x,y), (3.2)

where c(x, y) represents the contamination term. The problem of blind deconvolu-

tion is to determine f(x, y) given only the measured image, g(x, y), and very little

information about h(x, y) and c(x, y). Subsequent sections discuss each of the terms

in the imaging process and how they relate to IDA using the unconstrained mini-

mization approach.

3.2.1 Object. Obtaining a close representation of the "object" is the goal

of any imaging process, though the object itself can never be fully realized. Even

when one is close enough to observe an object with the unaided eye, the optical

qualities of the human visual system, like the finite extent of the pupil, distort the

actual object. For the purpose of analysis here, the "true" object, f(x, y), is a given

array of irradiance values. Simulated blurred images are created using Equation 3.2

above, and the results from IDA are analyzed for comparison purposes using the

true object. The term "object estimate," hereafter designated f(x, y), represents

the best guess at. the "true" object that IDA can produce. The Fourier transforms of

both the true object and the object estimate are represented by the object spectra,

F(u, v) and F(u, v), respectively, where (u, v) represents an arbitrary point in the

spatial frequency domain.

3.2.2 Point Spread Function (PSF). Sometimes referred to as the impulse

response, the true PSF, represented by h(x, y), contains the blurring function for

the entire optical system. This includes blurring caused by atmospheric turbulence

and the optics. For adaptive optics compensated images, the PSF includes blurring

from the optics and any residual phase errors uncorrected by the adaptive optics

system (21). IDA estimates the PSF which will be denoted as h(x,y). The Fourier
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transform of the PSF is called the optical transfer function (OTF). The true and

estimated OTFs are represented by H(u, v) and f-(u, v), respectively.

3.2.3 Image. The image is equivalently referred to as the convolution

image, the measured image or the measurement. The function, g(x,y), represents

the magnitude of the convolution plus any contamination as revealed by Equation

3.2. Its Fourier transform is called the image spectrum and is denoted by G(u, v).

3.2.4 Positivity. Positivity is the assumption that both the object, f(x, y),

and the PSF, h(x, y), have positive intensity values. One term in the algorithm's

objective function constrains the object and PSF estimates to have a minimum of

negative intensity values.

3.2.5 Support. Support is the only "hard" constraint utilized by the IDA

method. Two arrays, representing the extent of the object and PSF, respectively,

must be provided for the algorithm along with the measured image and initial esti-

mates of the object and PSF. These arrays constrain the object and PSF estimates to

have non-zero values only where the support array has a value of one. The remainder

of the image plane is set to zero corresponding to the complementary region where

the support array is zero. Since the pixels within the object and PSF estimates be-

come the variables for minimization in the unconstrained minimization process, the

support arrays actually reduce the number of variables IDA is required to minimize.

3.2.6 Error Metric. The error metric is a function which measures how

close or how far an estimate is in relation to its true value. A separate error met-

ric will be calculated for each object and each PSF estimate. Since this metric is

calculated using the true object or PSF, it will not be useful for processing real im-

agery. However, using Davey's philosophy, such an error metric serves as an excellent

preliminary assessment of the algorithm's performance (4).
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3.3 Computer Simulation of the Problem

This investigation utilizes simulation to reconstruct computer generated images

for several reasons. First, baseline data is necessary using pristine, infinite signal

images to determine a maximum ability to reconstruct an object under a given

set of conditions. Second, the effects of photon noise are to be studied in detail.

Obtaining actual imagery where photon noise is dominant is possible, but only with

simulated images can the photon level be carefully varied. Modeling photon arrivals

as a Poisson process in a computer simulation allows one to analyze the performance

of IDA under the strict condition where the contamination, c(x, y) in Equation 3.2,

contains only contributions due to photon noise. Finally, computer generated data

can be processed and analyzed on the same machine which means that the complexity

of data transfer is avoided.

Experimentation through computer simulation is similar to laboratory experi-

mentation. When one approaches computer simulation using the scientific method,

tangible results can be obtained. Therefore, before jumping head-first into the itera-

tive deconvolution algorithm, several questions must be asked and answered to guide

the experimental process. Five questions follow which provide a scientific approach

to computer simulation testing (23).

1. What is the experimental objective?

2. What phenomena will be observed?

3. How will observations be quantified?

4. What are the independent variables affecting the phenomena?

5. What factors will be held constant in the experiments?

Subsequent discussion seeks to answer each of the above questions. The main

purpose of the next several sections is to give the goals for the experimentation

discussed in Chapter 4. In addition, key factors and variables in the unconstrained
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minimization process are listed and defined to provide a better understanding of the

results obtained as well as the assumptions that apply to those results.

3.4 Experimental Objectives

The overall driving concern for this study lies in answering the following ques-

tion: Can unconstrained minimization effectively deconvolve an unknown object and

unknown point spread function from a single measurement? Though a simple "yes"

or "no" could answer the question, neither question nor answer is simple in this

case. Implementation of unconstrained minimization through the IDA technique al-

lows many different aspects of the reconstruction process to be estimated or varied.

Therefore, several variables were chosen for further analysis. The objectives relating

these variables are listed below.

1. Develop a baseline for object estimates using infinite signal measurements,

and determine the optimal support size necessary for reconstruction. This first ob-

jective will allow IDA to process several noiseless, blurred images using a series of

well-defined support constraints so that generalizations can be made across all the

images tested.

2. Determine the effect of photon noise on the object estimate and compare

with results previously obtained by Lane. Photon noise can be considered the origin

of shot noise in detectors that emit an electron upon absorption each photon (3).

Lane revealed that decreasing the light level present in the measurement significantly

affects the reconstruction (13). This second objective seeks to test the modifications

made by Jefferies and Christou, specifically the addition of a band-limiting mask

in the convolution error shown by Equation 2.16 (12). Results using this band-

limit mask can be compared with results obtained using Lane's method without the

band-limit mask.

3. Determine the utility of the band-limit error term toward improving the

reconstruction process. Jefferies and Christou define the third error term in their ob-
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jective function as the band-limit error which minimizes high frequencies in the OTF

estimates (12). This third objective seeks to analyze whether use of the band-limit

error shown by Equation 2.18 contributes in a positive way toward the reconstruction

process either in terms of reduced iterations or improved object and PSF estimates.

The enumerated objectives just listed form the main goals of the three ex-

periments for which results are presented and analyzed in the next chapter. The

purpose for those experiments will be to analyze the performance of Jefferies and

Christou's IDA technique. To better understand the results, however, one first must

comprehend the algorithm itself and how it achieves a best estimate of an object and

PSF. Thus, time must be devoted to understanding the unconstrained minimization

technique for blind deconvolution.

3.5 Constraint Driven Phenomena

Laboratory experiments are usually designed to test or reveal some physical

phenomenon. Computer simulation can accomplish a similar goal if the mathemat-

ical model represents a close approximation to reality. Therefore, the phenomena

revealed in the subsequent experiments result directly from the computer algorithm.

Although blind deconvolution was defined and a summary of different techniques was

outlined in Chapter 2, a more complete knowledge of the unconstrained minimization

technique utilized in this investigation is necessary. IDA, developed by Jefferies and

Christou as a modification to Lane's method, implements this proposed blind decon-

volution solution and is the object for subsequent analysis. The following paragraphs

seek to give insight into the Jefferies and Christou algorithm.

Since the Ayers-Dainty method had no well-defined stopping criteria, Lane

sought an unconstrained minimization approach to blind deconvolution by devel-

oping an algorithm which converged on a best set of object and PSF estimates.

The Lane technique formulates the same constraints applied at each iteration in the
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Ayers-Dainty method into a single error function. This function is then minimized

using conjugate gradient minimization.

3.5.1 Minimization. Conjugate gradient minimization (CGM) is one of

a number of steepest-descent iterative search methods. CGM finds at least a local

minimum for a multi-variate objective function given an initial starting point for each

variable. With a first guess, the CGM method calculates the value of the objective

function as well as the gradient at that location. Using this information, the method

then selects a subsequent guess in a direction opposite to the gradient. Thus, the next

guess traverses the steepest-descent along the complex, multidimensional function.

With this new guess, a new objective function value and gradient are found. This

process is repeated until the new objective function value is greater than the previous,

which implies that the previous point was a local minimum.

IDA implements conjugate gradient minimization on a single error function

with several terms. The pixel values within the support of the object and PSF

estimate arrays become the variables to be minimized. Therefore, CGM is performed

on a single objective function containing hundreds to thousands of variables for even

the relatively small image plane array of 64 x 64. Fortunately, the error terms derived

by Lane and Jefferies have analytic derivatives which simplify the calculation of the

gradient at each iteration. Though understanding the CGM process is important,

the error terms are the key to the unconstrained minimization process.

3.5.2 Image Error. As discussed in Section 2.5.3, the image domain error

term,

E,= Jf (X, y)12dxdy + Ih(x,y)12dxdy, (3.3)

quantifies the squared magnitude of the negative pixels inside the support regions for

both the object and PSF where -if and -th respectively represent the set of negative

pixels within the object and PSF support regions. Instead of forcing all negative
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values to zero as is done in the Ayers-Dainty approach, IDA seeks to find estimates of

the object and PSF where the magnitudes of the negative pixel values are minimized.

3.5.3 Convolution Error. The convolution error term,

Ef = J• JG(u, v) - F(uv)H(uv)I2 B(u,v)dudv, (3.4)

where N 2 represents the total number of pixels in the image plane and B(u, v) is

a band-limit mask, should always dominate the combined error of the objective

function since the deconvolution of the object and PSF from the measured image is

the goal of this process. This error term can best be expressed in terms of the Fourier

transforms due to the convolution theorem (7). As such, Equation 3.4 is minimized

when the product of both F(u, v) and H(u, v) equals G(u, v). With the addition of

noise in the imaging process, G(u, v) contains high frequency values not present in

either F(u, v) or H(u, v). Thus, a band-limit mask, B(u, v), is added to prevent the

product of P(u, v) and !t(u, v) from having to reconstruct the high frequency noise

content. This band-limit mask should allow IDA to handle a greater amount of noise

than the Lane method, which does not include the mask.

Another point to be considered is that the noise present within the passband

will have to be accounted for within the object and PSF estimates. Even the best

estimate of the object and PSF will contain a certain amount of error resulting

from the noise whose spectral content lies within the cutoff frequency. Thus, the

fundamental limit for restoring the measured image is not reached until the signal

cannot be retrieved from the noise present within the passband.

3.5.4 Band-Limit Error. The band-limit error term,

Ebl 1 If -(u,v)12B'(u,v) du dv, (3.5)

3-8



is minimized when the magnitude of all spatial frequency values in the OTF beyond

1.39 times the cutoff frequency is zero or very small, where B'(u, v) represents a

high pass filter which blocks out OTF values within 1.39 times the cutoff frequency

(12). This error term eliminates the occurrence of the trivial solution by preventing

the PSF estimate from approaching a delta function. Since the delta function has a

Fourier transform extending out to infinite spatial frequencies, limiting the OTF to

a specific passband rejects the trivial solution.

Use of this error term also has a distinct disadvantage which was alluded to by

Jefferies and Christou (12). As stated above in Section 3.5.3, the spectral content of

the noise within the passband must manifest itself in the object and PSF estimates.

When the PSF estimate is constrained by the band-limit error term, almost all of the

noise within the passband is accounted for in the object estimate. This is the reason

why Jefferies states that this constraint "has to be relaxed before convergence" (12).

3.6 Defining Comparison Metrics

Metrics are necessary to quantify errors in the reconstructed objects and PSFs

and for comparison against other object and PSF estimates. Since this investigation

solely uses computer generated images where the "true" object and PSF are known

exactly, metrics are presented which compare an estimate of either the object or PSF

with its actual value.

Goodman and Belsher [1976] discuss an error metric which uses a filtered ob-

ject, call it f(X,y), rather than the true object, f(x,y), since "restoration of an

object's frequency components beyond the diffraction limited cutoff of the optical

system is impossible to achieve with any linear invariant restoration filter" (9). Thus,

Goodman suggests that a low pass filtered version of the true object is the best that

can be obtained during post-processing. With the understanding that only those

frequency components within the passband can be restored, a new error metric for
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the object, ýf, follows:

f, I, F7,(u,v) - P,(u,v) Idudv
ff.1Fp(u,v)12 dudv 7 (3.6)

where -' includes all points within the diffraction limited cutoff, F'(u, v) represents

the normalized spectrum of the filtered true object and -P(u, v) contains the nor-

malized spectrum of the object estimate. Similarly, the PSF error can be written as

a function of the true OTF, H(u,v), and the normalized OTF estimate, fi(u, v),

shown by

ýh=ff, H(u, v) - -ft.(u, v) I'du dv(37ffr YjH(u, v)j2 du dv (3.7)

These error metrics count as error only those differences between the restored spec-

trum and the filtered true spectrum that lie within the passband. Division by the

integral over the power spectrum expresses the comparison metric as a fraction,

0 _< < 1, for estimates that are reasonably close to the actual value.

Since all objects used in this investigation will contain point sources of varying

intensity, additional metrics are useful in defining the error in point source location

and the intensity ratio for binary stars in the object estimates. For both true objects

and images, the intensity ratio for a binary star is often denoted as 1 : 77, where 7 is

defined as the ratio of the intensity of the dimmer star to the intensity of the brighter

star. Thus, 71, by definition, is less than 1.

A location error is defined for this investigation as the deviation in point source

location between the true object and its estimate divided by the blur radius, ý. 4

represents the radial distance from the center of the array to the first zero in the

true PSF, when the PSF is an Airy function. If the PSF remains constant for all

images, then the following equation can be used to calculate the location error for a
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particular point source,

6$0_ - j p - XP), + , - Y,)2 (3.8)

where (xp, yp) represents the location of point source, p, in the "true" object and

(ip, ýp) represents the location of point source, p, in the object estimate.

3.7 Independent Variables

From the objectives selected in Section 3.4, several aspects of the unconstrained

minimization approach to blind deconvolution need to be isolated. By varying a sin-

gle component within the isolated set, conclusions can be drawn regarding the effect

of that variable on the reconstruction process. To meet the enumerated objectives,

this investigation will analyze the IDA technique by varying the object contents, the

support size and the light level present in each image.

3.7.1 Objects and Image Measurements. Four different objects were chosen

to study the ability of IDA to reconstruct blurred images of astronomical objects.

The four object arrays, 64 x 64 pixels in size, contain point sources of differing inten-

sity. Object A, shown in Appendix B as Figure B.1, represents a single star centered

in an empty field. Object B, Figure B.3, is a binary star object of intensity ratio 1:0.7

with a very wide separation. Object C, Figure B.5, shows another binary star object

with intensity ratio 1:0.7 where the separation is closer. The final object, Object D

(Figure B.7), has the same binary star object with a very close separation. Instead

of using separate PSFs, binary point sources of varying separation are employed to

show the resolving power of the unconstrained minimization technique.

A single PSF was selected to blur each of the objects listed above. This PSF

has a certain radius, k, from its center to the first zero which can measured in pixels,

micro-radians or arc-seconds. By defining the separation distance between the point

sources in Objects B, C, and D as 0, then the ratio, A, represents a general means
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of quantifying the separation in the three objects. Using the ratio, ., the separation

between the point sources for Objects B, C and D are respectively, 1.81, 0.84 and

0.71. When the PSF is convolved with the true point source objects, much of the

detail disappears as revealed in Figures B.2, B.4, B.6 and B.8 which correspond

directly to Objects A, B, C and D.

3.7.2 Support Size. The first experiment tests the ability of the algorithm

to reconstruct noise-free blurred images with differing support sizes. Support is the

only firm constraint input into IDA; thus determining an optimal support region

in the first experiment is necessary to effectively running other experiments. It is

desirable to test the correlation of support region size with definable areas within

the impulse response or true PSF. Since a single PSF in the form of an Airy function

is used to blur each object, support size will vary according to the "zeros" of the

PSF. Three different support sizes, given in terms of the radius of a circle, were

chosen. The first support size extends to the zero region surrounding the main lobe

of the true PSF, having the same radius, 4. The second and third support sizes

respectively correspond to the null regions just after the first and second "rings"

of the PSF. Support areas are circular regions centered for the PSF support and

centered on each point source location for each object support. Thus the object

support for one of the binary stars is the union of two circles of varying size each

centered on the point source pixel locations. Figure 3.1 reveals an example of a

support region for Object B.

Experimental testing will utilize the three separate support regions defined for

each object as input into the unconstrained minimization method. Results from this

testing can be analyzed to determine how support size affects the blind deconvolution

reconstruction process.

3.7.3 Average Photo Events, K. The most basic source of noise lies in

photon fluctuations associated with the detection of the finite amount of light energy
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Figure 3.1 The object support region above relates to Object B where each circle
is centered on one of the two stars in the true object.

available in the imaging system. These photon fluctuations pose a fundamental

limitation to the "restorability" of a degraded image (9). Photon arrival at the

detector has been previously modeled as a Poisson process (9, 13, 20). A similar

model will be used here to create simulated images corrupted by photon noise. To

understand the model, first one must comprehend the factors affecting photon arrival.

The mean number of photons or the average number of photo events is a function

of the visual magnitude of the object, the image exposure time, the mean imaging

wavelength of the detector and the light gathering capacity of the optical device (3).

The model used to generate photon limited images makes use of the Poisson

probability mass function defined by Ross [1993],

p(x) =e (i-) X 0,1,2,... (3.9)

where x represents the number of photon arrivals at a certain location and A corre-

sponds to the mean number of photons which arrive at a detector cell over a specified

period of time (20). The number of photo events at each pixel location is a random
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Table 3.1 Visual magnitude and photo events for common sky objects.

OBJECT m, K
Venus -4.4 2.35 107

Jupiter -2.5 4.11 106

Sirius -1.5 1.59 .106

Artificial Satellite (typical) -. 96 1.00 . 106

Polaris +2.2 5.54. 104

variable from the Poisson distribution where the ratio of the irradiance in a pixel

to the total energy in the noise-free image is proportional to the mean of the ran-

dom variable, A. The proportionality constant, k, represents the average number of

photo events in the entire image over a single exposure or integration time. Thus, the

mean of the Poisson random variable at each pixel location, A(x, y), can be expressed

in the following way,
kg(X,y) (3.10)

A(x,y) = ffg(x,y)dxdy'

where g(x, y) represents a point in the noise-free convolution of f(x, y) and h(x, y).

Equation 3.10 above was used to generate images corrupted by photon noise for

differing photo event levels, K. Apparent visual magnitude, m,, is a convention

employed by astronomers to compare the relative brightness of objects in the night

sky (17). Each unit decrease in visual magnitude corresponds to a 2.5 factor increase

in visual brightness; thus, smaller m, indicates a brighter object. This same visual

magnitude can be used to calculate the average photon flux of an object. Table 3.1

reveals the number of photo events corresponding to the visual magnitude for several

common sky objects (23), based on a 1 meter aperture, an imaging wavelength of

500 nm and a 1.8-ms integration time. Three different values were selected for K:

100,000, 10,000, and 5,000. The photon limited images for the four objects appear

in Appendix B, Figures B.10 through B.21.
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3.8 Constants

Now that several variables have been reviewed, a couple of factors must be

held constant for accurate analysis of the independent variables. The constants for

subsequent experimentation are the OTF and the initial estimates input into Jefferies

and Christou's blind deconvolution algorithm.

3.8.1 Optical Transfer Function. As already stated, the OTF used to create

all simulated images is held constant so that comparisons can be made regarding the

ability of IDA to reconstruct it for different objects and differing amounts of noise.

Subsequent experiments use the Airy pattern for the true PSF shown in Figure

3.2. This PSF is theoretically the PSF of a circular diffraction-limited system (11).

Goodman [1968] defines the Fourier transform of this PSF, or rather the OTF, for a

diffraction-limited circular aperture for incoherent light imaging as follows:

H(p) = ( ] Pif p ( P (3.11)

0 otherwise,

where p = V/u 2 + v 2 and po denotes the diffraction-limited cutoff frequency (7). By

keeping this factor constant, any deviations observed in the PSF estimate result

primarily from the object or the noise.

3.8.2 Initial Guesses. The iterative deconvolution algorithm requires an

initial estimate at both the object and PSF for a given measured image. In the past,

others (1, 12, 13) have input white noise for initial estimates of both the object and

PSF. All runs in this investigation will use a single Gaussian estimate for the PSF

and will use the measurement as the initial object estimate. Though this procedure

draws close to the trivial solution, it also represents a more logical first guess at both

values. The object should simply be a variation on the measured image whereas the
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Figure 3.2 The PSF shown above was convolved with the four true objects to obtain
the blurred images found in Appendix B.

PSF should contain some of the same properties as the Gaussian-radial symmetry

and a smooth roll-off.

3.9 Summary

The merits of the unconstrained minimization approach to blind deconvolution

derived by Lane and modified by Jefferies and Christou warrants further analysis.

This chapter discussed several points crucial to understanding the experiments for

this investigation. As presented, the terminology listed requires merely a basic un-

derstanding of Fourier optics. The simplifying assumptions made and the models

developed here allow direct application of the findings of this study to actual astro-

nomical images. The objectives defined in this chapter are further developed into

actual experiments in Chapter 4. Additionally, the following chapter presents the

results of those experiments and analyzes the results in light of the terminology,

assumptions and metrics just discussed.
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IV. Results and Analysis

4.1 Introduction

To determine how well Jefferies and Christou's iterative deconvolution algo-

rithm (IDA) can reconstruct compensated astronomical imagery, several experiments

are performed. These experiments utilize computer simulation to analyze the algo-

rithm's performance under specific controlled conditions. Post-processing is per-

formed using computer generated images. The following sections provide detailed

information regarding the three experiments and draw conclusions from the results

of each experiment.

4.2 Experiment One

Develop a baseline for object estimates using infinite signal measurements, and

determine the optimal support size necessary for reconstruction. As stated in Section

3.4, the first major objective of this experiment involves testing IDA on noise-free

images to understand the capability of this blind deconvolution technique without

the presence of noise. A secondary goal involves varying the support constraint to

determine its impact on the reconstruction process.

4.2.1 Simulation Parameters. Input images for this experiment represent

the convolution of the "true" objects with a single PSF as discussed in Section

3.6.1. These four noise-free images (Figures B.2, B.4, B.6 and B.8) are displayed in

a three-dimensional view where increasing irradiance corresponds to a higher value

on the graph. In addition to the measurements, IDA requires initial estimates at

both the object and PSF as well as support regions for both object and PSF in

order to begin blind deconvolution processing. As alluded to in Section 3.7.2, three

different support regions are selected for each object which utilize some of the known

attributes of the true impulse response.
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Assuming circular symmetry in the PSF, a circle is chosen as the shape of the

support region for the PSF estimate. Knowing the objects are point sources which

image into an impulse response or sum of impulse responses, support regions for

the objects are also selected to be circular in shape. Therefore, depending upon the

number of stars in the image, the support region for the object estimate consists of the

total area under separate circular regions centered over each "known" star location.

Use of this a priori information tests the best reconstruction IDA can obtain. For

actual imagery, star locations may be revealed from other more complicated image

processing techniques. In that case, support regions may be set up using the known

data and subsequent images processed via this blind deconvolution technique.

The size of the circular regions must be determined. An appropriate support

size might also be related to the impulse response. In order to tie the support size to

the PSF, setting the radius of the support circles to the first, second and third zeros

of the PSF is proposed. Since the true PSF in this case is the Airy disk, these zeros

correspond to the radial points where the irradiance for an Airy function is zero. Sir

George Biddell Airy (1801-1892) first derived an equation defining the irradiance of

a point source imaged through a circular aperture (10). Airy's function for intensity,

1(9), appears below

1(9) 1(0) 2J 1 (kasin0)] 2  (4.1)ka sin 0 41

where 0 represents the angular distance from the center, k is the wave number, and

J1 (') is a Bessel function of the first kind of order one. The first three zeros for the

Airy function occur when the quantity ka sin 0 is 3.83, 7.02 and 10.17, respectively.

Upon integrating the Airy function, one finds that 84% of the light energy is present

within the first zero corresponding to the main lobe of the Airy function. 91% of

the light energy remains within the second dark ring and over 95% lies within the

third zero (10). These zeros correspond to pixel locations for the true PSF used

in this investigation. Figure 4.1 shows a slice through the center of the true PSF

used to blur the objects for this experiment. Zeros for this PSF occur at 11, 20 and
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Figure 4.1 A slice through the true point spread function reveals zeros at 11, 20
and 29 pixels from the center.

29 pixels from the center. These pixel values then become the radii of the support

region circles used to create support arrays for the object and PSF estimates.

In this first experiment, IDA mimics Lane's method for blind deconvolution

since only the image and convolution error terms contribute to the combined error

function. Additionally, there is no need to implement Jefferies' band-limit mask as

part of the convolution error since no information in the measured image spectrum

exists outside of the cutoff frequency defined by the OTF. Thus, applying this mask

has no effect on the noise-free images processed in Experiment 1. A total of twelve

runs of the deconvolution algorithm are required in this case to process the four

images for each of three different support regions.

4.2.2 Simulation Results. Results from the computer simulation runs us-

ing unconstrained minimization for noise-free images appear outstanding. Figure 4.2

displays a gray-scaled image of the binary star with the smallest separation-blurred

Object D, now called Image D. After blind deconvolution of that measurement using

the Lane method, the object estimate clearly reveals the binary star as shown in Fig-
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Figure 4.2 Image D, a noise-free blurred image.

ure 4.3. Three-dimensional plots of the object and PSF estimates resulting from the

processed images appear in Appendix C, Figures C.1 through C.24 for Experiment

1.

Section 3.6 defined several metrics which quantify the errors in the object and

PSF estimates in relation to the actual objects and PSF. The numerical quantities

appear in Table 4.1. Each of the four images were processed using each of three

separate support regions defined at either the first, second or third zero in the true

PSF. The table refers to the different support regions as 1, 2 or 3, where 1, 2 and

3 represent a circular support radius equal to the distance to the first, second and

third zero in the true PSF, respectively. Also listed are the number of iterations

required by the Lane method to achieve a local minimum. The total errors for both

the object (ýje) and the PSF (ýh) represent the deviation from the true object or PSF

within the passband as defined by Equations 3.6 and 3.7. The location error reveals

the ratio of the error in the point source location to the blur radius. In the noise-free
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Figure 4.3 Object estimate of Image D after deconvolution using a support region
extending out to the second zero of the true PSF.

case, almost all point sources were estimated to be at the exact same pixel location

as in the true object, thus having zero location error. The intensity ratio appears

for comparison against the true objects B, C and D-each containing a binary star

with an intensity ratio of 1:0.7.

For further analysis of the support constraint, plots are shown which reveal the

spatial frequency content of the true objects and their respective estimates. Figures

4.4 - 4.7 present the radially averaged, normalized object spectra estimated using

differing support regions. In each plot, the horizontal axis displays spatial frequency

where "1" represents the cutoff frequency of the optical system. The vertical axis is

normalized for comparison purposes, and the magnitudes of the object spectra are

radially averaged from the (u, v) = (0, 0) or DC value. Graphed are the following

five functions within each figure.

1. First, the true object spectrum appears. This spectrum represents the single

or double point sources; therefore, it has infinite frequency content.

4-5



Table 4.1 Error metric summary for Experiment 1.

OBJECT/ Support Iter a f - h 60C b 1: C

A / 1 294 0.258 0.279 0.000 n/a
A / 2 564 0.111 0.060 0.000 n/a
A / 3 873 0.116 0.045 0.000 n/a
B / 1 3000 1.155 1.541 0.545 / 0.545 1:0.69
B / 2 1184 0.096 0.046 0.000 / 0.000 1:0.70
B / 3 1533 0.146 0.054 0.000 / 0.000 1:0.69
C/ 1 3000 0.987 1.867 *** /*** ***d

C / 2 948 0.097 0.051 0.000 / 0.000 1:0.70
C / 3 1057 0.114 0.041 0.000 / 0.000 1:0.71
D / 1 1906 0.661 1.195 0.455 / 0.530 1:0.74
D / 2 1140 0.083 0.051 0.000 / 0.000 1:0.72
D / 3 1052 0.102 0.043 0.000 / 0.000 1:0.68

alterations required by IDA for reconstruction.

'Location errors are listed for the number of point sources present in the object.
cIntensity ratio is only applicable for binary stars.
dFor this estimate, the point source locations and relative intensities were indiscernible.

2. The solid line represents the true object spectrum passed through a lowpass

filter with a cutoff frequency equal to that of the blurring function. This solid line

reflects the theoretically best achievable solution possible, given that all information

outside of the band-limit was discarded by the imaging process.

3. The line furthest away from the desired spectrum, shown by a dotted line in

all four graphs, represents the estimates created using the smallest support region-

defined by the first zero in the PSF. Inclusion of only the main lobe of the PSF

in the support region does not provide adequate information to the algorithm to

reconstruct the objects.

4. All four estimates generated from the support region using the second zero

in the PSF come closest to the low-pass filtered true object spectrum. This observed

quality in the object spectra is revealed quantitatively in Table 4.1, where the total

object error, ýf, is optimal for support number 2 for each of the four images.
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Figure 4.4 Experiment 1: Radially averaged object spectra for Image A comparing
the filtered true object spectrum with three estimates using different
support regions.

5. Object spectra representing the estimates generated from the support region

using the third zero in the PSF remain close to the estimates processed with support

region 2. However, the reconstructions shown in the spatial frequency domain reflect

a slightly diminished tendency toward following the true object spectrum within the

passband.

4.2.3 Conclusions. The object and PSF estimates shown in Appendix C,

the comparison metrics in Table 4.1, and the data revealed in Figures 4.4 through 4.7

indicate that Lane's unconstrained minimization approach to blind deconvolution

is certainly an acceptable technique for reconstructing blurred noise-free images.

Obviously, an accurate estimate of the support for both the object an PSF aids in

this reconstruction. For the noise-free, point source objects applied in Experiment

1, a support region which extends out to the second zero in the PSF provides the

best estimates. This "second zero" support region will be utilized exclusively for

subsequent experimentation. The high frequency content in the spectra and "spikes"
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Figure 4.5 Experiment 1: Radially averaged object spectra for Image B comparing
the filtered true object spectrum with three estimates using different
support regions.
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Figure 4.6 Experiment 1: Radially averaged object spectra for Image C comparing
the filtered true object spectrum with three estimates using different
support regions.
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Normalized Object Spectra (radially averaged)
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Figure 4.7 Experiment 1: Radially averaged object spectra for Image D comparing
the filtered true object spectrum with three estimates using different
support regions.

visible in Figure 4.3 at regular intervals as well as the other object estimates deserve

further discussion.

Both the high spatial frequencies and the ring of "spikes" probably have a

great deal of correlation, especially since the spikes have infinite frequency content.

The spikes visible in all of the object estimates shown in Appendix C are formed on

the very edge of the support region, thus viewing an estimate gives one a feel for

the size of the support region applied. The boundary of the support region presents

a large discontinuity in the image plane. This discontinuity may be the single most

important factor in understanding the existence of the spikes. Since the appearance

of the spikes occur every time, one might reason that their elimination by filtering

out all irradiance present on the edge of the support region-essentially, erasing the

spikes-would be valid. Another viable option would place the measured image in

the center of a much larger array, then choose a support region large enough that

the discontinuity occurs outside the original array size. This avenue is alluded to in

Jefferies' statement that his "support constraints were very loose" (12).
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Spatial frequencies that are estimated above the cutoff frequency of the opti-

cal system pose more questions. The selected means of unconstrained minimization

imposes no strict requirements on either object or PSF estimate. Neither the im-

age error nor the convolution error restrict spatial frequency content outside the

optical band-limit; thus, Lane's method will always produce information above the

band-limit. Jefferies and Christou claim that super-resolution is possible using the

unconstrained minimization technique. Jefferies cites Lucy [1992] who demonstrated

that if the convolution components are of finite extent, then the positivity constraint

permits gains in resolution over the diffraction limit (12). Goodman [1968] also states

that retrieving object spectrum values outside the passband is theoretically possi-

ble using analytic continuation as long as the object is spatially bounded and the

spectral information within the passband is known exactly (7). Others refute this

super-resolution claim, stating that all information beyond the cutoff frequency of

the imaging system is irrecoverable (2). Regardless of the super-resolution debate,

high frequency content present in the object spectrum gives rise to sharp edges within

the object in addition to the spikes present around the support edge. Thus, it re-

mains to be proved elsewhere whether the discontinuity at the edge of the support

region creates the spikes or whether the high frequency content allowed to exist in

the object spectrum results in forming the spikes around the support region.

4.3 Experiment Two

Determine the effect of photon noise on the object estimate and compare with

results previously obtained by Lane. Section 3.4 defines the objective of Experiment

2 for applying the unconstrained minimization technique modified by Jefferies to

images corrupted by photon noise. Jefferies' modification involves the addition of

a band-limit filter to the convolution error term in Equation 3.4 which means that

the convolution of the object and PSF estimate do not include the high frequency
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noise present in the measured image. These reconstructions can then be compared

against noisy images reconstructed using the strict Lane method without the mask.

4.3.1 Simulation Parameters. The only variable parameter for this ex-

periment is the light level present in each simulated image. Section 3.7.3 describes

the Poisson model used to generate simulated low light level images. Experiment 2

utilizes the same four blurred images from experiment one but corrupts each with

differing amounts of photon noise. Photon noise is quantified in terms of an average

number of photo events present in each image. For this experiment, average photo

events per image, R?, of 100,000, 10,000, and 5,000 are used. The resulting noisy

images are shown in Appendix B, Figures B.10 through B.21. These twelve images

become the measured images input into IDA for subsequent processing.

To maintain consistency among the images, a single support region correspond-

ing to the second zero in the true PSF is utilized throughout this experiment. Ad-

ditionally, a band-limit equal to the cutoff frequency in the OTF used to blur the

objects is required to test the modification to the Lane method recommended by

Jefferies and Christou. Finally, as in Experiment 1, Experiment 2 only applies the

image and convolution error to the combined error function for minimization.

4.3.2 Simulation Results. Appendix D presents the actual object estimates

obtained in Experiment 2 while Table 4.2 summarizes the comparison metrics for

the object and PSF estimates.

The first two rows listed for each separate image represent a comparison be-

tween Lane's method and the band-limit modification. Both runs used the image

containing 10' photo events as the measured image. The values for the object error,

ýf, and the PSF error, ýh, reveal a significant decrease in the error value when the

band-limit mask is employed. Further evidence can be observed by comparing the

resulting object estimates visually as presented in Appendix D, Figures D.1 through

D.8. Figures D.1, D.3, D.5 and D.7 show the object estimates using the strict Lane
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Table 4.2 Error metric summary for Experiment 2.

OBJECT K Iter a ýf ýh 60C b 1 "7 C
A 105 d '769 0.437 0.834 0.182 n/a
A 105 875 0.207 0.157 0.203 n/a
A 104 1001 0.264 0.320 0.288 n/a
A 5. 103 1347 0.179 0.152 0.328 n/a
B W05 1020 0.293 0.226 0.091 / 0.091 1:0.69
B 105 1976 0.092 0.048 0.000 / 0.091 1:0.77
B 104 2743 0.138 0.077 0.091 / 0.091 1:0.76
B 5.103 1530 0.292 0.412 0.288 / 0.257 1:0.77
C 105 832 0.316 0.302 0.257/ * * * * **
C 105 1995 0.080 0.041 0.091 / 0.128 1:0.77
C W04 1109 0.193 0.155 0.182 / 0.091 1:0.68
C 5.103 1643 0.313 0.460 0.364 / 0.203 1:0.91
D 105 1042 0.258 0.235 0.091 / *** *** f
D 105 1270 0.105 0.066 0.091 / 0.128 1:0.76
D 104 1221 0.292 0.392 0.182 / 0.203 1:0.73
D 5. 103 3000 0.595 0.691 0.386 / 0.273 1:0.84

'Iterations required by IDA for reconstruction.
bLocation errors are listed for the number of point sources present in the object.
cIntensity ratio is only applicable for binary stars.
'The first line for each image (k = 10') displays the metrics for estimates resulting from the

strict Lane method. Subsequent runs utilize the band-limit mask.
'The dimmer point source location was indiscernible. Thus, no intensity ratio was calculated.
fSee footnote e.

method on the photon noise corrupted Images A, B, C and D, respectively. Figures

D.2, D.4, D.6 and D.8 reveal the smooth nature of the object estimates utilizing the

band-limit mask. The Lane method proved unsuccessful at reconstructing images

containing fewer than 105 photo events. Therefore, the only comparison made was

for images where k = 10'.

Another method of viewing the results of the band-limit mask comparison

involves plotting the radially averaged object estimate spectra. Figures 4.8 through

4.11 plot these spectra along with the filtered and unfiltered true object spectra. As

previously determined, the estimates made using the band-limit mask more closely
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Normalized Object Spectra (radially averaged)
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Figure 4.8 Experiment 2: Radially averaged object spectra for Image A (K 10= )
comparing the use of the band-limit mask to Lane's method. The filtered
and unfiltered true object spectra appear as reference.

follow the true object spectrum than those using Lane's method. Evidence from the

spectra as well as the object estimate lead one to conclude that the high frequency

noise content in the image spectrum hinders the reconstruction process.

Knowing that the band-limit mask on the convolution error aides in the recon-

struction of noisy images, results from images with differing light levels can now be

presented. Figures D.10 through D.17 in Appendix D present the object estimates

resulting from average photo event levels of 10,000 and 5,000. As previously shown

by Lane (13), photon level significantly affects the reconstruction of images limited

by the length of the exposure or the object's intensity. Table 4.2 reveals that in al-

most all cases, decreasing the average number of photo events increases the error in

both the object and PSF estimates. The same conclusion is reached when one views

the radially averaged object spectra shown in Figures 4.12 through 4.15. Except for

Image A, each spectrum steps further away from the filtered true object spectrum

as k decreases. As the number of photo events decreases, the noise present in the

measurement increases across spectral lines. Therefore, the increased noise within
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Normalized Object Spectra (radially averaged)
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Figure 4.9 Experiment 2: Radially averaged object spectra for Image B ( =10')
comparing the use of the band-limit mask to Lane's method. The filtered
and unfiltered true object spectra appear as reference.
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Figure 4.10 Experiment 2: Radially averaged object spectra for Image C (k 10')
comparing the use of the band-limit mask to Lane's method. The
filtered and unfiltered true object spectra appear as reference.
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Normalized Object Spectra (radially averaged)
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Nigure 4.11 Experiment 2: Radially averaged object spectra for Image D (k 10')
comparing the use of the band-limit mask to Lane's method. The

filtered and unfiltered true object spectra appear as reference.

the passband manifests itself as greater'error within the object and PSF estimates.

For images with around 1,000 photo events, the resulting object and PSF estimates

are very poor and thus, not presented in this analysis.

4$.3.3 Conclusions. Experiment 2. was designed to test the validity of the
band-limit mask as applied to photon limited images as well as determine the abisty

of IDA to reconstruct images with low light levels. As expected, decreasing the

light level or number of photo events present in an image significantly degrades the

reconstruction. The random arrival of photo events within an image effectively act

as noise. Therefore, a Eimit to the reconstruction is reached when the photon noise

sufficiently conceals the signal present in the image.

The results definitively prove the positive utility of the band-limit mask on

the convolution error. This mask allows Jefferies' algorithm to reconstruct images

with far less light present in the measurement than with Lane's method. The mask

effectively filters out the high frequency content of the noise, and subsequently allows
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Figure 4.12 Experiment 2: Radially averaged object spectra for Image A applying
the band-limit mask to images with differing amounts of photon noise,
k•= 105,7 104 and 5, 000, The filtered and unfiltered true object spectra

appear as reference.
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Figure 4.13 Experiment 2: Radially averaged object spectra for Image B applying

the band-limit mask to images with differing amounts of photon noise,
/ = 105, 104 and 5, 000. The filtered and unfiltered true object spectra

appear as reference.

4-16



Normalized Object Spectra (radially averaged)
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Figure 4.14 Experiment 2: Radially averaged object spectra for Image C applying
the band-limit mask to images with differing amounts of photon noise,
k = 10i, 104 and 5, 000. The filtered and unfiltered true object spectra

appear as reference.
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Figure 4.15 Experiment 2: Radially averaged object spectra for Image D applying

the band-limit mask to images with differing amounts of photon noise,

K = lol, 104 and 5, 000. The filtered and unfiltered true object spectra

appear as reference.
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reconstruction of images with a much lower signal-to-noise ratio. As revealed in Lane

[1992], unconstrained minimization cannot effectively reconstruct images when the

number of photo events in the brightest pixel is less than 10' (13). With the band-

limit mask, however, excellent results can be obtained when the brightest pixel has

less than 102 photo events present as expressed in Figure D.14 which shows the

reconstruction of Figure B.17 containing fewer than 70 photo events in its brightest

pixel.

4.4 Experiment Three

Determine the utility of the band-limit error term toward improving the recon-

struction process. With the success of the band-limit mask in the convolution error

term, this final experiment studies the band-limit error term, shown in Equation

3.5, which requires a knowledge of the same information necessary in Experiment 2.

If the cutoff frequency of the optical system is known for a given image, then the

band-limit error term might prove useful in the reconstruction process just as the

band-limit mask greatly improved the object estimates in the previous experiment.

A look at the comparison metrics and the number of iterations required in this ex-

periment compared with similar quantities available from previous experiments for

the same measurement should provide an understanding of the effect the band-limit

error has on the blind deconvolution process.

4.4.1 Simulation Parameters. Experiment 3 differs from previous runs

using this unconstrained minimization technique in that a third error term is added

to the objective function to be minimized. The only input this third term requires is

the band-limit of the imaging system, which is also required for use of the band-limit

mask in the convolution error term. The convolution error term retains the band-

limit mask and thus remains unchanged from Experiment 2. The image domain

error term still minimizes any negative values in either the object or PSF estimates.

As for support, the optimal support size determined in Experiment 1 will be input
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once again in this study. A priori, one must know the linear extent of the second

zero in the impulse response in the image domain and know the band-limit of the

impulse response in the frequency domain.

Selected images used in this experiment include the four infinite signal blurred

images applied in Experiment 1 and their simulated, light limited images used in

Experiment 2 with average photo events of 10' and 10'. This experiment will input

twelve different simulated images into the iterative deconvolution algorithm to test

the utility of the band-limit error term. Jefferies and Christou state that the use

of the band-limit term must "be relaxed before convergence" (12). Therefore, one

can expect that the algorithm will run for a number of iterations with the band-

limit error term, then converge after a series of more iterations using only the image

domain and convolution error terms.

Some preparatory analysis provides useful data regarding the use of the band-

limit term. The purpose for this term is to reduce high spatial frequency content in

the PSF estimate. Figures 4.16 and 4.17 reveal the consequence of allowing the band-

limit error to be used until convergence for noise-free Image B. The PSF estimate is

very smooth and has the appearance of an Airy function, yet its error, ýh, of 0.423 is

much larger than the error value obtained in Experiment 1 for the same measurement

and support-see Image B, support 2 in Table 4.1. On the other hand, the object

estimate consists of two rings centered on the actual point source locations. The

object error, ýf, is 0.376 which is almost four times greater than the error obtained

in Experiment 1 (see Table 4.1). As Figure 4.17 shows, only the rings contain the

intensity and the points inside the ring have no intensity. Obviously, allowing the

band-limit term to remain in the error function until convergence increases the object

and PSF errors. The method used for this experiment allows the band-limit term to

be used for the first fifty iterations, then the current estimates at iteration fifty are

input as the initial guesses for the algorithm using only the image domain and the

convolution error terms.
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Figure 4.16 Experiment 3: PSF estimate of Image B after 2693 iterations using the
band-limit error term to convergence. The band-limit term effectively
constrains high spatial frequencies within the PSF estimates.
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Figure 4.17 Experiment 3: Object estimate of Image B after 2693 iterations using
the band-limit error term to convergence. Note the circular rings which
surround the true point source locations, though these locations possess
no intensity.
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4.4.2 Simulation Results. Strict application of the band-limit error gives

inconsistent results. Comparing these results with those established in previous

experiments reveal a wide range of differences. Figures 4.18 through 4.21 show the

results of processing the k = 10' images with the band-limit error next to the results

for the same simulated image in Experiment 2. Again, the filtered and true object

spectra appear as references. From the graph, Image D (Figure 4.21) shows little

deviation in the two reconstructions and would lead one to believe that the band-

limit error has minimal effect on the algorithm. However, Image A (Figure 4.18)

reveals an improvement with the band-limit error whereas Images B and C (Figures

4.19 and 4.20) show that application of the error has a detrimental effect on the

object estimates.

Table 4.3 presents the comparison metrics for each object and PSF estimate.

Metrics for the infinite signal images can be compared with data from Experiment 1

using the same support region. The use of the band-limit error term improves Image

A, but requires almost four times as many iterations. Image D has very similar

results in both cases, but metrics for Images B and C were much lower without the

band-limit error term in Experiment 1 as shown in Table 4.1.

Similar results were obtained applying images corrupted by photon noise to

this study. When compared against similar data in Table 4.2 for the simulated

photon limited measurements from Experiment 2, the band-limit error significantly

improves Image A in terms of the metrics, ýf and 6h. However, this error shows

little deviation from previous results for Images C and D and proves detrimental for

the reconstruction of Image B. Appendix E, Figures E.1 through E.12, displays the

resulting object estimates for all of the data presented in Table 4.3.

4.4.3 Conclusions. The inconsistent results make drawing conclusions from

Experiment 3 very difficult. From the limited number of images processed, the best

results in using the band-limit error occur when the point sources are grouped closely
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Figure 4.18 Experiment 3: Radially averaged object spectra for Image A comparing
the object estimate reconstructed with the aide of the band-limit error
to the estimate found in experiment 2 without the error.
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Figure 4.19 Experiment 3: Radially averaged object spectra for Image B comparing
the object estimate reconstructed with the aide of the band-limit error
to the estimate found in experiment 2 without the error.
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Figure 4.20 Experiment 3: Radially averaged object spectra for Image C comparing
the object estimate reconstructed with the aide of the band-limit error
to the estimate found in experiment 2 without the error.
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Figure 4.21 Experiment 3: Radially averaged object spectra for Image D comparing

the object estimate reconstructed with the aide of the band-limit error
to the estimate found in experiment 2 without the error.
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Table 4.3 Error metric summary for Experiment 3.

OBJECT K Itera ' f ýh ýIoc b 1: n

A oo 2105 0.059 0.036 0.000 n/a
A 10' 2590 0.058 0.036 0.000 n/a
A 104 2739 0.103 0.071 0.091 n/a
B c0 2693 0.372 0.635 *** /*** ***e

B 10' 1625 0.372 0.678 0.328 / 0.328 1:0.82
B 10 4  2169 0.536 2.262 0.257 / 0.257 1:0.71
C 00 2113 0.335 0.508 *** /*** *** f
C 10' 2212 0.091 0.046 0.091 / 0.128 1:0.80
C 104 1569 0.211 0.185 0.182 / 0.182 1:0.66
D oo 1260 0.083 0.047 0.091 / 0.128 1:0.77
D 105 1680 0.104 0.063 0.091 / 0.128 1:0.79
D 104 1002 0.296 0.415 0.182 / 0.128 1:0.71

aIterations include fifty with the band-limit error then all subsequent iterations without the

band-limit error.
bLocation errors are listed for the number of point sources present in the object.
cIntensity ratio is only applicable for binary stars.
dThe first line for each image (k = oo) displays the metrics for estimates resulting from a

noise-free, infinite signal image.
'The dimmer point source location was indiscernible. No intensity ratio was calculated.
fSee note e.
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around the center of the image. For Image B which contains two point sources spaced

far apart, unsatisfactory results were obtained. As the point sources approach one

another, the results approach those of Experiment 2. These trends seem to indicate

that the band-limit error works better when applied to images containing information

tightly grouped around the central point in the image plane.

In terms of the unconstrained minimization method, the addition of the band-

limit error alters the objective function and thus changes the direction of the search

for a local minimum. In some cases, this change in search direction can be a help

and in others it might be a hindrance. Also a factor may be the number of iterations

one should optimally take in this new search direction. More analysis is required

to determine whether the number of iterations performed using the band-limit error

might have a correlation with improved results. Perhaps improvement might be made

for different images using a different number of initial iterations with the band-limit

error.

4.5 Summary

This investigation sought to test whether unconstrained minimization might

be an effective tool in solving the blind deconvolution problem for compensated

imagery. Therefore, experiments were run on simulated blurred images with and

without photon noise to determine the ability of the Lane method as modified by

Jefferies and Christou to reconstruct imagery. Experimental objectives included the

following: (1) a test of the support criterion, (2) analysis of the band-limit mask in

the presence of photon noise, and (3) a study of the band-limit error term used by

Jefferies and Christou. Results from these experiments provided answers to some

questions, but generated several more. For instance, the high spatial frequency

content produced in the noise-free case remains in the object and PSF estimates

throughout all of the experiments. Though the high frequency information yields

well-defined point sources apart from the image plane, spikes also appear on the
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edge of the support region. The validity of the high frequency information also

deserves further attention. Analysis may prove that this unconstrained minimization

technique performs some analytic continuation as described by Goodman [1968] as

necessary for super-resolution (7).

Along with the many questions evolving from this investigation, some positive

results arose also. Resulting data proves that the unconstrained minimization tech-

nique can accurately recover object information from a measured image with very

little information regarding the impulse response. The accuracy of the object and

PSF estimates have a high dependence upon the choice of the support region. Excel-

lent results were obtained using a support region extending out to the second zero in

the true point spread function. Additionally, the band-limit mask contained in the

convolution error term allows the algorithm to handle more noise in a measurement

than the strict Lane method. This mask ensures that the object and PSF estimates

convolve to form the portion of the measurement contained within the passband of

the optics. Thus, a priori information regarding the cutoff frequency is essential in

reconstructing low light level images. Lastly, the band-limit error term acts as an

additional factor which may improve the quality of the reconstructed image. Its use

will prevent the trivial solution from occurring, but using the band-limit term to

alter the search pattern of the minimization routine may also produce some positive

effects on the eventual "best" object estimate.
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V. Conclusion and Recommendations

5.1 Introduction

Imagery obtained through the adaptive optics telescope at AMOS require addi-

tional processing to remove the blurring still present in the images. Little information

is known about the blurring function which produces the images output from the

adaptive optics telescope; thus a means of processing the compensated imagery is

necessary which does not require knowledge of the PSF. The term given to this type

of problem is blind deconvolution.

Over the last few years, several techniques have been suggested which attempt

to iteratively solve the blind deconvolution problem with subsequent estimates at an

object and a PSF under certain known constraints. Ayers and Dainty developed the

first working algorithm which successively constrained object and PSF estimates in

both the image domain and spatial frequency domain. The Ayers-Dainty technique

also had some problems in that no avenue existed within the algorithm for determin-

ing when the best estimate of the object and PSF had been reached. Holmes and

Lane reached separate solutions for determining convergence criteria for the blind

deconvolution problem. Holmes formulated the problem in terms of a maximum-

likelihood approach and Lane developed an unconstrained minimization method.

This investigation focused on analyzing the unconstrained minimization technique

to solve the problem of deconvolving a simulated image with little or no information

about the impulse response.

Methods were explained and experiments were developed around analyzing the

Lane method to solving blind deconvolution as modified by Jefferies and Christou

[1993]. Simulated imagery was used to test the response of the iterative deconvolu-

tion algorithm to noise-free images and images corrupted exclusively by photon noise.

The objectives tested involved observing the results of differing support sizes, study-

ing the effects of a band-limit mask to reconstruct noisy images, and determining
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the utility of a new error term designed to reduce high spatial frequency content in

the optical transfer function estimates. Results produced by the experiments proved

extremely promising. With information regarding only the band-limit of the optics,

this algorithm effectively deconvolved noise-free data as well as simulated images

modeled to contain differing amounts of photon noise. Several important conclu-

sions were also drawn from the experimentation that deserve further enumeration.

5.2 Conclusions

In addition to accurately recovering object information from measurements

with an unknown impulse response, results from the investigation of the uncon-

strained minimization technique revealed several significant conclusions.

1. The accuracy of the object and PSF estimates are highly dependent upon

the choice of the support region. Excellent results were obtained using a support

region extending out to the second zero in the PSF, where the area within the second

zero retains 91 percent of the volume of the actual PSF.

2. The band-limit mask contained in the convolution error term allows the

algorithm to handle significantly more noise in a measurement than the strict Lane

method. This mask ensures that the object and PSF estimates convolve to form the

portion of the measurement contained within the passband of the optics. Thus, a

priori information regarding the cutoff frequency is essential in reconstructing low

light-level images.

3. The band-limit error term acts as an additional factor which may improve

the quality of reconstructed images. Its use will always prevent the trivial solution

from occurring, but using the band-limit term to alter the search pattern of the

minimization routine may also produce some positive effects in the object estimate.

Since the band-limit error term can have a negative impact on the reconstruction,

special care must be taken with regard to using this term.
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4. High spatial frequency information, outside of the cutoff frequency, appears

in the object and PSF estimates. Due to the nature of unconstrained minimization,

nothing prevents the inclusion of this information. The information manifests itself

in the object estimate as well-defined edges, meaning that no gradual roll-off occurs

in the transition from high intensity regions to low intensity regions within the

image plane. This quality improves the resolution of the object estimate beyond

the diffraction limit. However, the high frequencies also contribute to spikes which

form at regular intervals around the edge of the support region. The presence of this

information above the cutoff frequency may lead some to question the validity of the

results.

5.3 Recommendations for Further Research

Obviously much more research is required before the unconstrained minimiza-

tion approach to blind deconvolution could be used operationally at AMOS. This

investigation, however, seeks to present a basic framework to be built upon in subse-

quent research efforts. A single blind deconvolution technique is analyzed for objects

containing single and double point sources. The following items are recommenda-

tions for future research aimed at producing an operational algorithm to improve

the quality of compensated imagery similar to that produced at AMOS.

1. Try weighting the different error terms in the objective function. Evidence

from Experiment 3 indicates that the band-limit error term can help or hinder the

reconstruction process. A variable weight on the band-limit term as well as the

image domain and convolution error terms may reveal an improved convergence or

possibly enhanced object and PSF estimates.

2. Determine the steps necessary to reconstruct extended objects through the

unconstrained minimization technique. Continuous extended objects, like satellites,

pose entirely new problems when imaging through the atmosphere. Although out-

standing results were obtained on point source objects, a blurred extended object
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may prove very difficult to reconstruct using this method. The process of testing

the iterative deconvolution algorithm should start where this investigation leaves

off-with multiple point source objects. Adding more point sources should provide

an understanding of how the algorithm performs for larger, more complex images.

Modifications to the unconstrained minimization technique are most likely required

to enable the recovery of detailed information in extended objects through blind

deconvolution.

3. To reconstruct compensated images of satellites, compare unconstrained

minimization to maximum-likelihood estimation as a different means to accomplish

the goal of blindly deconvolving extended object data. A more thorough analy-

sis of the work by Holmes (11) and Schulz (21) may lead to a more robust blind

deconvolution algorithm capable of handling the complexity of extended objects.

4. Analyze the source of the high spatial frequency information found in the

object and PSF estimates produced by this algorithm. Further research is required

on Jefferies and Christou's claim that their iterative deconvolution algorithm can

super-resolve blurred images (12). Such research would certainly help validate this

method and give credence to the results of the algorithm which contain spatial

frequency information beyond the band-limit of the imaging system.
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Appendix A. Iterative Deconvolution Algorithm Tutorial

A. 1 Introduction

This investigation focuses on the iterative deconvolution algorithm (IDA) de-

veloped by Stuart Jefferies and Julian Christou who graciously provided the actual

code used in their paper (12). The IDA code (annotated simply IDA for this ap-

pendix) is an extensive image processing package. It provides numerous options for

performing blind deconvolution and "not-so-blind" deconvolution. The program can

take simply a measurement and initial guesses at both an object and PSF and it-

eratively alter the object and PSF estimates toward a best estimate of each using

the Lane method (13) of unconstrained minimization. If more information is avail-

able, like the band-limit of the optics or Fourier modulus data, then IDA uses this

information in an unconstrained minimization approach which is a modification to

the Lane method. Additionally, IDA handles multiple images of the same object

with ease. The program runs on a SUN workstation. The following sections discuss

how IDA implements the algorithm derived by Lane and modified by Jefferies and

Christou, the input required to run the program and the proper format for the data,

what options are available in processing images, and the modifications which must

be made each time IDA is run on a different image.

A.2 How IDA works

As revealed in Section 3.5, IDA solves the blind deconvolution problem through

the minimization of an error function. Minimization is achieved through a conjugate

gradient minimization routine which finds a local minimum to a multi-dimensional

objective function through a steepest-descent search method. Such a method requires

only a subroutine to calculate the value of a function at a particular location and

another subroutine to calculate the derivative at the location. IDA provides these
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subroutines to the conjugate gradient minimization function using the error terms

and their derivatives presented in Jefferies and Christou [1993].

IDA minimizes the combined error function shown in Equation 2.16. Each

pixel location in both the object and PSF estimate represent the different variables

from which the error function must be minimized. The support region input is

utilized by the program to reduce the number of variables. IDA only includes those

pixel locations for both the object and PSF which lie within the support region. All

other pixels are set to zero outside the support. Using the arrays provided for initial

estimates, IDA picks off the value at each pixel location within the support to create

the series of values for a first guess at the object and PSF estimate.

The conjugate gradient minimization routine alters each pixel value in the

series in a direction opposite to the gradient. Thus, each successive iteration reduces

the combined error function value. The iterations cease when one of three things

occur: (1) a local minimum is reached such that any variation in pixel values causes

an increase in the objective function, (2) the reduction in the error function value

for each iteration decreases below a pre-set tolerance, or (3) a maximum number of

iterations is reached.

A.3 Required Input

Running IDA requires several input data files. Modifications made to Jefferies

and Christou's code for this investigation require that the data files be formatted in

either binary or ASCII. Below, each of the inputs are defined and the appropriate

formats are annotated.

A.3.1 Convolution Image. IDA first requires a filename containing the

data representing the convolution image, also known as the measurement. A binary

format is required for this data.
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A.3.2 Object Estimate. The second input necessary to reconstruct an

object from the input measurement is the filename containing the initial estimate

at the object in binary format. At regular intervals in the iteration process, the

current object estimate will be written to this file. A binary representation of the

final estimate appears in this file alone after IDA completes; thus, the initial estimate

contained in this file is destroyed.

A.3.3 PSF Estimate. Similar to the object estimate, IDA requires the name

of the binary file containing the first guess at a PSF. This estimate is also overwritten

by successive estimates. Upon completion of the program, this file contains the final

estimate at the PSF.

A.3.4 Object and PSF Support Arrays. A single file containing two support

arrays must be provided to IDA. The file contains the object support array followed

immediately by the PSF support array in ASCII format. The two arrays must be

the same size as the object, PSF and convolution image. The value in each pixel

location contains either a "0" or "1', where one represents a pixel within the support

region and zero represents a pixel outside the support region.

A.3.5 Output Log File. IDA requires a unique filename to write the output

information. A name of an existing file will be rejected. This file will contain a sum-

mary of the parameters entered to run the program and a listing of the quantitative

values of the different error terms at each iteration.

A.3.6 Maximum Iterations. The final input required for IDA to reconstruct

an image is the maximum number of iterations allowed for the run. Choosing too

few iterations is not a problem since the program has an option which allows the

user to "restart" from the point at which the maximum number of iterations was

reached by inputting the estimates obtained as the initial estimates and typing "1'l

for the restart parameter.
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A.4 Available Options

After the information above has been entered, a series of additional questions

regarding which error terms IDA will use to perform unconstrained minimization

must be answered. The first question asks for either 0, 1, or 2 for the telescope

aperture parameter. The second queries whether a restart is required, and the third

asks for a Fourier spectrum parameter of 0, 1, or 2. If a non-circular convolution

mask must be input, then a fourth question prompts the user for that informa-

tion. The next few sections outline how to implement several different variations on

the iterative deconvolution algorithm by answering the four questions listed below

differently.

Q1. Input telescope aperture parameter (2,1,0):

Q2. Input 1 for a restart (else 0):

Q3. Input Fourier spectrum parameter (2,1,0):

Q4. Input 1 for non-circular convolution mask (else 0):

A.4.1 Basic Lane Method. The Lane method is the simplest form of the

unconstrained minimization technique which IDA can perform. The Lane method,

as discussed in Section 2.5.3, minimizes an error function containing only an image

domain error term and a convolution error term. Since no a priori information is

required, a "0" is entered for all four questions. However, if a restart is desired, then

"1" would be the appropriate entry for the second question, Q2.

A.4.2 Band-limit Mask. As shown in experiment two, the addition of a

band-limiting mask on the convolution error term significantly increases the ability

of IDA to reconstruct images in the presence of noise. Utilization of the band-

limit error occurs whenever the telescope aperture parameter, set in Q1, is non-zero.

Entering either "1" or "2" for Q1 will require an additional data file. After all the

questions are asked, IDA will prompt the user for the file containing cutoff frequency

A-4



information. If multiple measurements images of the same object are input, then

IDA expects to find the cutoff frequency in pixels from the center for each unknown

PSF. The program then creates a binary mask array for each PSF with a circular

region of "l's" with a radius equal to that input from the cutoff frequency file. If non-

circular masks are desired, then answering "1" to Q4 gives the user the opportunity

to enter a filename containing the non-circular mask(s) used in conjunction with the

convolution error term. To use the band-limit mask alone, similar to the runs made

in experiment two, simply answer "1" to Q1 and "0" to the others.

A.4.3 Band-limit Error Term. The third term in Jefferies and Christou's

error function is a band-limit error which minimizes the high frequency content of

the PSF. This error term was used in experiment three with mixed results. IDA

adds this term to the objective function whenever the telescope aperture parameter

is "2". Thus, the current version of IDA does not allow for use of the band-limit

error without employing the band-limit mask also. As explained above, entering "2"

for Q1 will require additional information regarding the cutoff frequency of each PSF

in pixels. The band-limit error term minimizes all pixel values in the OTF estimate

outside of 1.39 times the input cutoff frequency (12).

As explained in Section 4.4, experiment three required that the band-limit error

term be used for only the first few iterations, then IDA was restarted. In this case,

the maximum iterations were set to 50 and the answers to Q1 through Q4 were 2,

0, 0, 0, respectively. After running 50 iterations with the band-limit error, IDA was

restarted with a large maximum iteration value and the following values entered for

Q1 through Q4: 1, 1, 0, 0. The first "1" makes use of the band-limit mask and the

second "1" tells IDA that the input object and PSF estimates are from a previous

run that did not attain a minimal objective function value.

A.4.4 Fourier Modulus Error. The third question (Q3) allows IDA to

employ the fourth error term or the Fourier Modulus error. This error term was

A-5



not explored in this investigation since it requires explicit knowledge of the object

attainable only through other image processing techniques. The Fourier spectrum

parameter is set to zero unless use of the error term is desired. Entering "2" for Q3

requires input of both the real and complex portions of the object spectrum. Simply

entering "1" for Q3 informs IDA that Fourier modulus information will be entered.

Additionally, use of the Fourier modulus error term requires the input of a "signal-

to-noise" filter as explained in Jefferies and Christou [1993], the wavelength of the

observations, the diameter of the aperture, and image scale in milli-arcseconds/pixel.

More information can be found regarding the Fourier modulus error in Jefferies and

Christou (12).

A.5 Modifications and Recompilation

Since the code supplied by Jefferies and Christou is in FORTRAN, array size

parameters must be set prior to compilation of the code. To facilitate processing

of images having different sizes or support areas, a header file containing all of the

applicable parameters for processing of a single image or set of images may require

modification each time IDA is run. This header file sets the number of PSFs that

will be required for a single run, the number of pixels on one side of the image array,

the number of variables IDA will have to minimize in the objective function, and

the tolerance at which the change in the error function value must reach before a

minimum value is found. Each of the parameters are explained in detail below.

A.5.1 Number of PSFs. The number of PSFs or npsf must be set to

"1" for a single measurement, object and PSF combination. However, if multiple

realizations of the same object are input into IDA, then the total number of different

PSF estimates which IDA will have to make at each iteration is the value for npsf.

A.5.2 Number of Pixels. IDA requires that all arrays input into the pro-

gram (measurements, estimates, support, etc.) have the same size, npix x npix,
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where npix represents the number of pixels in either one row or one column of the

square array.

A.5.3 Number of Variables. This parameter gives rise to modifying the

header file and recompiling IDA even for different images of the same array size. The

number of variables, nvar, equals the total number of non-zero pixels within both the

object and PSF support arrays. Therefore, any time the support size changes, nvar

changes and IDA must be recompiled. For the four different images used in this

investigation, a copy of the header file was kept in each of four different files with

the appropriate values for nvar. When a run was required for image B for instance,

the header for image B was copied into the header file using the following UNIX

command: cp headerB IDA.h. Then, compiling was accomplished through a "make-

file" supplied by Stuart Jefferies by issuing this command: make IDA-FITS.

A.5.4 Tolerance. The tolerance, tol, represents a very small amount of

change in the value of the error function. Once the amount of change reaches the

tolerance, then it is assumed that the conjugate gradient minimization routine has

found a local minimum and further iterations cease.

A. 6 Summary

This appendix provides information regarding the use of the IDA FORTRAN

code provided by Stuart Jefferies and modified for use in this investigation. A brief

explanation of how the algorithm is implemented was presented along with explicit

details regarding the use of IDA to reconstruct images. The program allows a user

to utilize many different means of implementing the unconstrained minimization

technique to solve the blind deconvolution problem. It is hoped that this appendix

will allow wider use of IDA to process blurred images and that future research can

proceed more efficiently by using the documentation presented here. Copies of the
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IDA code used in this study can be obtained through Major Michael Roggemann,

Air Force Institute of Technology/ENP, Wright-Patterson AFB, OH 45433-6583.
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Appendix B. Simulated Images

B.1 True Objects and Noise-Free Images

This section contains a visual representation of the four objects used in exper-

iments one, two and three. Each object is a 64 x 64 array with one or two point

sources within each array. Three of the objects contain binary stars with an intensity

ratio of 1:0.7. Immediately after each "true" object appears an image resulting from

the convolution of the object with a single PSF shown in Figure B.9.
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Figure B.1 Object A contains a single point source centered in the array.
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Figure B.2 Image A represents the convolution of Object A with the PSF in Figure
B.9.
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Figure B.3 Object B contains two point sources separated by 1.81 times the blur
radius.
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Figure B.4 Image B represents the convolution of Object B with the PSF in Figure

B.9.
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Object C
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Figure B.5 Object C contains two point sources separated by 0.84 times the blur
radius.
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Figure B.6 Image C represents the convolution of Object C with the PSF in Figure
B.9.
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Object D
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Figure B.7 Object D contains two point sources separated by 0.71 times the blur
radius.
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Figure B.8 Image D represents the convolution of Object D with the PSF in Figure
B.9.
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B.2 True Point Spread Function
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Figure B.9 The true PSF was used to generate the blurred images previously
shown. The iterative deconvolution algorithm attempts to estimate
this PSF along with the applicable object for each blurred image. The
blur radius for the PSF shown above is 11 pixels representing the spatial
distance from the center of the array to the first zero.
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B.3 Photon Limited Images

Image A (100,000 photo events)
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Figure B.1O The image above represents a short-exposure of Image A containing
only 100,000 photo events (K = 105).
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Image A (10,000 photo events)
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Figure B.11 The image above represents a short-exposure of Image A containing
only 10,000 photo events.(!? = 104).
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Figure B.12 The image above represents a short-exposure of Image A containing
only 5,000 photo events (k• = 15.103).
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Image B (100,000 photo events)
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Figure B.13 The image above represents a short-exposure of Image B containing
only 100,000 photo events (k = 105).
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Figure B.14 The image above represents a short-exposure of Image B containing
only 10,000 photo events (/f = 104).
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Image B (5,000 photo events)
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Figure B.15 The image above represents a short-exposure of Image B containing
only 5,000 photo events (k = 5. 103).
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Figure B.16 The image above represents a short-exposure of Image C containing
only 100,000 photo events (k" = 105).
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Image C (10,000 photo events)
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Figure B.17 The image above represents a short-exposure of Image C containing
only 10,000 photo events (k = 104).
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Figure B.18 The image above represents a short-exposure of Image C containing
only 5,000 photo events (k = 5. 103).
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Image D (100,000 photo events)
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Figure B.19 The image above represents a short-exposure of Image D containing
only 100,000 photo events (k = 105).
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Figure B.20 The image above represents a short-exposure of Image D containing
only 10,000 photo events (k" = 104).

B-12



Image D (5,000 photo events)
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Figure B.21 The image above represents a short-exposure of Image D containing
only 5,000 photo events (K = 5.103).
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Appendix C. Experiment 1 Results

The first experiment tests the unconstrained minimization approach to blind

deconvolution for noise-free blurred images. Results are presented for the four images

shown in Figures B.2, BA, B.6 and B.8 using three different support regions. The

support regions correspond to the first, second and third zero of the true PSF as

explained in Section 3.7.2. The data presented in this appendix refer to the smallest

support size (corresponding to the first zero) as support region 1, the medium-sized

support as support region 2 and the largest as support region 3. A ring of "spikes"

appear on the edge of the support region for each object estimate. This phenomenon

seems to be a function of the algorithm, and the amplitude of the spikes decreases

with larger support regions. As presented in Chapter 4, the best results are obtained

using support region 2 for these images.
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Figure C.1 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image A and utilizing support
region 1.
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Figure C.2 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image A and utilizing support
region 2.
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Figure C.3 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image A and utilizing support
region 3.
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Figure C.4 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image B and utilizing support
region 1.
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Figure C.5 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image B and utilizing support
region 2.
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Figure C.6 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image B and utilizing support
region 3.
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Figure C.7 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image C and utilizing support
region 1.
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Figure C.8 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image C and utilizing support
region 2.
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Figure C.9 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image C and utilizing support
region 3.
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Figure C.1O Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image D and utilizing support
region 1.
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Figure C.12 Shown above are the object and PSF estimates produced by uncon-
strained minimization from noise-free Image D and utilizing support
region 3.
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Appendix D. Experiment 2 Results

The second experiment analyzes the performance of the iterative deconvolu-

tion algorithm in the presence of photon noise. The simulated photon limited im-

ages shown in Figures B.10 through B.21 are used as input measurements into the

algorithm. A band-limit mask in the convolution error is compared against the ba-

sic Lane method of unconstrained minimization. Results presented in Figures D.1

through D.8 show that even with as many as 100,000 photo events, the addition of

the band-limit mask greatly enhances the "reconstructability" of the algorithm. Two

PSF estimates are shown in Figure D.9 which reveal the wide variation in impulse

response estimation in the presence of noise. Presentation of further PSF estimates

provide little insight to the ability of this algorithm to reconstruct objects from

noisy blurred images, therefore, no other PSF estimates are shown. The remainder

of the data presented show object estimates from images containing 10,000 and 5,000

photo events. It is clear that less light reduces the algorithm's ability to effectively

reconstruct images.
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Figure D.1 The object estimate above resulted from Image A (K = 10') using the
strict Lane method for unconstrained minimization.
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Figure D.2 The object estimate above resulted from Image A (K = 10') using a
band-limit mask in the convolution error term.
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Figure D.3 The object estimate above resulted from Image B (K= 10) using the
strict Lane method for unconstrained minimization.
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Figure D.4 The object estimate above resulted from Image B (k = 10i) using a
band-limit mask in the convolution error term.
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Figure D.5 The object estimate above resulted from Image C (k= 10') using the
strict Lane method for unconstrained minimization.
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Figure D.6 The object estimate above resulted from Image C (K = 10i) using a
band-limit mask in the convolution error term.
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Figure D.7 The object estimate above resulted from Image D (kf 10') using the
strict Lane method for unconstrained minimization.
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Figure D.8 The object estimate above resulted from Image D (K = 10s) using a
band-limit mask in the convolution error term.
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Figure D.9 The PSF estimates above resulted from Images A and D (k 10')
using a band-limit mask in the convolution error term. These estimates
reveal that the presence of noise in the measurement causes deviations
in the PSF estimate from the "true" PSF. Subsequent PSF estimates
are not shown.
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Figure D.10 The object estimate above resulted from Image A (K = 10') using a
band-limit mask in the convolution error term.
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Figure D. 11 The object estimate above resulted from Image A (Kf = 5, 000) using

a band-limit mask in the convolution error term.
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Figure D.12 The object estimate above resulted from Image B (/k 104) using a
band-limit mask in the convolution error term.
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Figure D.13 The object estimate above resulted from Image B (k = 5, 000) using
a band-limit mask in the convolution error term.
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Figure D.14 The object estimate above resulted from Image C (K• 104) using a

band-limit mask in the convolution error term.
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Figure D.15 The object estimate above resulted from Image C (K 5,1000) using

a band-limit mask in the convolution error term.
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Figure D.16 The object estimate above resulted from Image D (K 10") using a
band-limit mask in the convolution error term.
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Figure D.17 The object estimate above resulted from Image D (k = 5, 000) using
a band-limit mask in the convolution error term.
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Appendix E. Experiment 3 Results

The third experiment tests the addition of a band-lmit error term within the

objective function for unconstrained minimization to improve the reconstruction of

both noise-free and photon limited images. The band-lmit error, as explained by Jef-

feries and Christou (12), is utilized at the start of the iterative process to prevent the

trivial solution from appearing. Though no trivial solution was previously obtained

with these images, this experiment attempts to determine whether the band-limit

error may have a positive effect on the reconstruction process. This experiment used

a fixed number of iterations (50) employing the band-limit error term, then ran the

algorithm without the band-limit error term to achieve proper convergence. Mixed

results appear in the following data revealing that the use of the band-limit term

should be studied further.
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Figure E.1 The object estimate above resulted from Image A (noise-free) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.2 The object estimate above resulted from Image A (/K = 10') using a
band-limit error term in the unconstrained minimization technique.
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Figure E.3 The object estimate above resulted from Image A (K 104) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.4 The object estimate above resulted from Image B (noise-free) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.5 The object estimate above resulted from Image B (Kf = 10') using a
band-limit error term in the unconstrained minimization technique.
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Figure E.6 The object estimate above resulted from Image B (k• 10') using a

band-limit error term in the unconstrained minimization technique.
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Figure E.7 The object estimate above resulted from Image C (noise-free) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.8 The object estimate above resulted from Image C (k = 105) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.9 The object estimate above resulted from Image C (nosef10e) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.10 The object estimate above resulted from Image D (noise-free) using a
band-limit error term in the unconstrained minimization technique.
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Figure E.11 The object estimate above resulted from Image D (K = 10") using a
band-limit error term in the unconstrained minimization technique.
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Figure E.12 The object estimate above resulted from Image D (k = 104) using a
band-limit error term in the unconstrained minimization technique.
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